Metamath Proof Explorer


Theorem rescfth

Description: The inclusion functor from a subcategory is a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses rescfth.d D = C cat J
rescfth.i I = id func D
Assertion rescfth J Subcat C I D Faith C

Proof

Step Hyp Ref Expression
1 rescfth.d D = C cat J
2 rescfth.i I = id func D
3 1 oveq2i D Faith D = D Faith C cat J
4 fthres2 J Subcat C D Faith C cat J D Faith C
5 3 4 eqsstrid J Subcat C D Faith D D Faith C
6 id J Subcat C J Subcat C
7 1 6 subccat J Subcat C D Cat
8 2 idffth D Cat I D Full D D Faith D
9 7 8 syl J Subcat C I D Full D D Faith D
10 9 elin2d J Subcat C I D Faith D
11 5 10 sseldd J Subcat C I D Faith C