Database
BASIC CATEGORY THEORY
Categories
Subcategories
reschom
Next ⟩
reschomf
Metamath Proof Explorer
Ascii
Unicode
Theorem
reschom
Description:
Hom-sets of the category restriction.
(Contributed by
Mario Carneiro
, 4-Jan-2017)
Ref
Expression
Hypotheses
rescbas.d
⊢
D
=
C
↾
cat
H
rescbas.b
⊢
B
=
Base
C
rescbas.c
⊢
φ
→
C
∈
V
rescbas.h
⊢
φ
→
H
Fn
S
×
S
rescbas.s
⊢
φ
→
S
⊆
B
Assertion
reschom
⊢
φ
→
H
=
Hom
⁡
D
Proof
Step
Hyp
Ref
Expression
1
rescbas.d
⊢
D
=
C
↾
cat
H
2
rescbas.b
⊢
B
=
Base
C
3
rescbas.c
⊢
φ
→
C
∈
V
4
rescbas.h
⊢
φ
→
H
Fn
S
×
S
5
rescbas.s
⊢
φ
→
S
⊆
B
6
ovex
⊢
C
↾
𝑠
S
∈
V
7
2
fvexi
⊢
B
∈
V
8
7
ssex
⊢
S
⊆
B
→
S
∈
V
9
5
8
syl
⊢
φ
→
S
∈
V
10
9
9
xpexd
⊢
φ
→
S
×
S
∈
V
11
fnex
⊢
H
Fn
S
×
S
∧
S
×
S
∈
V
→
H
∈
V
12
4
10
11
syl2anc
⊢
φ
→
H
∈
V
13
homid
⊢
Hom
=
Slot
Hom
⁡
ndx
14
13
setsid
⊢
C
↾
𝑠
S
∈
V
∧
H
∈
V
→
H
=
Hom
⁡
C
↾
𝑠
S
sSet
Hom
⁡
ndx
H
15
6
12
14
sylancr
⊢
φ
→
H
=
Hom
⁡
C
↾
𝑠
S
sSet
Hom
⁡
ndx
H
16
1
3
9
4
rescval2
⊢
φ
→
D
=
C
↾
𝑠
S
sSet
Hom
⁡
ndx
H
17
16
fveq2d
⊢
φ
→
Hom
⁡
D
=
Hom
⁡
C
↾
𝑠
S
sSet
Hom
⁡
ndx
H
18
15
17
eqtr4d
⊢
φ
→
H
=
Hom
⁡
D