Metamath Proof Explorer


Theorem reschom

Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rescbas.d D = C cat H
rescbas.b B = Base C
rescbas.c φ C V
rescbas.h φ H Fn S × S
rescbas.s φ S B
Assertion reschom φ H = Hom D

Proof

Step Hyp Ref Expression
1 rescbas.d D = C cat H
2 rescbas.b B = Base C
3 rescbas.c φ C V
4 rescbas.h φ H Fn S × S
5 rescbas.s φ S B
6 ovex C 𝑠 S V
7 2 fvexi B V
8 7 ssex S B S V
9 5 8 syl φ S V
10 9 9 xpexd φ S × S V
11 fnex H Fn S × S S × S V H V
12 4 10 11 syl2anc φ H V
13 homid Hom = Slot Hom ndx
14 13 setsid C 𝑠 S V H V H = Hom C 𝑠 S sSet Hom ndx H
15 6 12 14 sylancr φ H = Hom C 𝑠 S sSet Hom ndx H
16 1 3 9 4 rescval2 φ D = C 𝑠 S sSet Hom ndx H
17 16 fveq2d φ Hom D = Hom C 𝑠 S sSet Hom ndx H
18 15 17 eqtr4d φ H = Hom D