Metamath Proof Explorer


Theorem rescnvcnv

Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion rescnvcnv A -1 -1 B = A B

Proof

Step Hyp Ref Expression
1 cnvcnv2 A -1 -1 = A V
2 1 reseq1i A -1 -1 B = A V B
3 resres A V B = A V B
4 ssv B V
5 sseqin2 B V V B = B
6 4 5 mpbi V B = B
7 6 reseq2i A V B = A B
8 2 3 7 3eqtri A -1 -1 B = A B