Metamath Proof Explorer


Theorem rescnvimafod

Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024) (Revised by AV, 29-Sep-2024)

Ref Expression
Hypotheses rescnvimafod.f φ F Fn A
rescnvimafod.e φ E = ran F B
rescnvimafod.d φ D = F -1 B
Assertion rescnvimafod φ F D : D onto E

Proof

Step Hyp Ref Expression
1 rescnvimafod.f φ F Fn A
2 rescnvimafod.e φ E = ran F B
3 rescnvimafod.d φ D = F -1 B
4 cnvimass F -1 B dom F
5 4 a1i φ F -1 B dom F
6 1 fndmd φ dom F = A
7 6 eqcomd φ A = dom F
8 5 3 7 3sstr4d φ D A
9 1 8 fnssresd φ F D Fn D
10 df-ima F D = ran F D
11 3 imaeq2d φ F D = F F -1 B
12 fnfun F Fn A Fun F
13 funimacnv Fun F F F -1 B = B ran F
14 1 12 13 3syl φ F F -1 B = B ran F
15 incom B ran F = ran F B
16 15 a1i φ B ran F = ran F B
17 11 14 16 3eqtrd φ F D = ran F B
18 10 17 eqtr3id φ ran F D = ran F B
19 18 2 eqtr4d φ ran F D = E
20 df-fo F D : D onto E F D Fn D ran F D = E
21 9 19 20 sylanbrc φ F D : D onto E