Metamath Proof Explorer


Theorem resco

Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006)

Ref Expression
Assertion resco A B C = A B C

Proof

Step Hyp Ref Expression
1 relres Rel A B C
2 relco Rel A B C
3 vex x V
4 vex y V
5 3 4 brco x A B y z x B z z A y
6 5 anbi2i x C x A B y x C z x B z z A y
7 19.42v z x C x B z z A y x C z x B z z A y
8 vex z V
9 8 brresi x B C z x C x B z
10 9 anbi1i x B C z z A y x C x B z z A y
11 anass x C x B z z A y x C x B z z A y
12 10 11 bitr2i x C x B z z A y x B C z z A y
13 12 exbii z x C x B z z A y z x B C z z A y
14 6 7 13 3bitr2i x C x A B y z x B C z z A y
15 4 brresi x A B C y x C x A B y
16 3 4 brco x A B C y z x B C z z A y
17 14 15 16 3bitr4i x A B C y x A B C y
18 1 2 17 eqbrriv A B C = A B C