Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resco
Next ⟩
imaco
Metamath Proof Explorer
Ascii
Unicode
Theorem
resco
Description:
Associative law for the restriction of a composition.
(Contributed by
NM
, 12-Dec-2006)
Ref
Expression
Assertion
resco
⊢
A
∘
B
↾
C
=
A
∘
B
↾
C
Proof
Step
Hyp
Ref
Expression
1
relres
⊢
Rel
⁡
A
∘
B
↾
C
2
relco
⊢
Rel
⁡
A
∘
B
↾
C
3
vex
⊢
x
∈
V
4
vex
⊢
y
∈
V
5
3
4
brco
⊢
x
A
∘
B
y
↔
∃
z
x
B
z
∧
z
A
y
6
5
anbi2i
⊢
x
∈
C
∧
x
A
∘
B
y
↔
x
∈
C
∧
∃
z
x
B
z
∧
z
A
y
7
19.42v
⊢
∃
z
x
∈
C
∧
x
B
z
∧
z
A
y
↔
x
∈
C
∧
∃
z
x
B
z
∧
z
A
y
8
vex
⊢
z
∈
V
9
8
brresi
⊢
x
B
↾
C
z
↔
x
∈
C
∧
x
B
z
10
9
anbi1i
⊢
x
B
↾
C
z
∧
z
A
y
↔
x
∈
C
∧
x
B
z
∧
z
A
y
11
anass
⊢
x
∈
C
∧
x
B
z
∧
z
A
y
↔
x
∈
C
∧
x
B
z
∧
z
A
y
12
10
11
bitr2i
⊢
x
∈
C
∧
x
B
z
∧
z
A
y
↔
x
B
↾
C
z
∧
z
A
y
13
12
exbii
⊢
∃
z
x
∈
C
∧
x
B
z
∧
z
A
y
↔
∃
z
x
B
↾
C
z
∧
z
A
y
14
6
7
13
3bitr2i
⊢
x
∈
C
∧
x
A
∘
B
y
↔
∃
z
x
B
↾
C
z
∧
z
A
y
15
4
brresi
⊢
x
A
∘
B
↾
C
y
↔
x
∈
C
∧
x
A
∘
B
y
16
3
4
brco
⊢
x
A
∘
B
↾
C
y
↔
∃
z
x
B
↾
C
z
∧
z
A
y
17
14
15
16
3bitr4i
⊢
x
A
∘
B
↾
C
y
↔
x
A
∘
B
↾
C
y
18
1
2
17
eqbrriv
⊢
A
∘
B
↾
C
=
A
∘
B
↾
C