Database
BASIC CATEGORY THEORY
Categories
Subcategories
rescval
Next ⟩
rescval2
Metamath Proof Explorer
Ascii
Unicode
Theorem
rescval
Description:
Value of the category restriction.
(Contributed by
Mario Carneiro
, 4-Jan-2017)
Ref
Expression
Hypothesis
rescval.1
⊢
D
=
C
↾
cat
H
Assertion
rescval
⊢
C
∈
V
∧
H
∈
W
→
D
=
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H
Proof
Step
Hyp
Ref
Expression
1
rescval.1
⊢
D
=
C
↾
cat
H
2
elex
⊢
C
∈
V
→
C
∈
V
3
elex
⊢
H
∈
W
→
H
∈
V
4
simpl
⊢
c
=
C
∧
h
=
H
→
c
=
C
5
simpr
⊢
c
=
C
∧
h
=
H
→
h
=
H
6
5
dmeqd
⊢
c
=
C
∧
h
=
H
→
dom
⁡
h
=
dom
⁡
H
7
6
dmeqd
⊢
c
=
C
∧
h
=
H
→
dom
⁡
dom
⁡
h
=
dom
⁡
dom
⁡
H
8
4
7
oveq12d
⊢
c
=
C
∧
h
=
H
→
c
↾
𝑠
dom
⁡
dom
⁡
h
=
C
↾
𝑠
dom
⁡
dom
⁡
H
9
5
opeq2d
⊢
c
=
C
∧
h
=
H
→
Hom
⁡
ndx
h
=
Hom
⁡
ndx
H
10
8
9
oveq12d
⊢
c
=
C
∧
h
=
H
→
c
↾
𝑠
dom
⁡
dom
⁡
h
sSet
Hom
⁡
ndx
h
=
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H
11
df-resc
⊢
↾
cat
=
c
∈
V
,
h
∈
V
⟼
c
↾
𝑠
dom
⁡
dom
⁡
h
sSet
Hom
⁡
ndx
h
12
ovex
⊢
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H
∈
V
13
10
11
12
ovmpoa
⊢
C
∈
V
∧
H
∈
V
→
C
↾
cat
H
=
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H
14
2
3
13
syl2an
⊢
C
∈
V
∧
H
∈
W
→
C
↾
cat
H
=
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H
15
1
14
eqtrid
⊢
C
∈
V
∧
H
∈
W
→
D
=
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H