Metamath Proof Explorer


Theorem rescval

Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypothesis rescval.1 D = C cat H
Assertion rescval C V H W D = C 𝑠 dom dom H sSet Hom ndx H

Proof

Step Hyp Ref Expression
1 rescval.1 D = C cat H
2 elex C V C V
3 elex H W H V
4 simpl c = C h = H c = C
5 simpr c = C h = H h = H
6 5 dmeqd c = C h = H dom h = dom H
7 6 dmeqd c = C h = H dom dom h = dom dom H
8 4 7 oveq12d c = C h = H c 𝑠 dom dom h = C 𝑠 dom dom H
9 5 opeq2d c = C h = H Hom ndx h = Hom ndx H
10 8 9 oveq12d c = C h = H c 𝑠 dom dom h sSet Hom ndx h = C 𝑠 dom dom H sSet Hom ndx H
11 df-resc cat = c V , h V c 𝑠 dom dom h sSet Hom ndx h
12 ovex C 𝑠 dom dom H sSet Hom ndx H V
13 10 11 12 ovmpoa C V H V C cat H = C 𝑠 dom dom H sSet Hom ndx H
14 2 3 13 syl2an C V H W C cat H = C 𝑠 dom dom H sSet Hom ndx H
15 1 14 eqtrid C V H W D = C 𝑠 dom dom H sSet Hom ndx H