Database
BASIC CATEGORY THEORY
Categories
Subcategories
rescval2
Next ⟩
rescbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
rescval2
Description:
Value of the category restriction.
(Contributed by
Mario Carneiro
, 4-Jan-2017)
Ref
Expression
Hypotheses
rescval.1
⊢
D
=
C
↾
cat
H
rescval2.1
⊢
φ
→
C
∈
V
rescval2.2
⊢
φ
→
S
∈
W
rescval2.3
⊢
φ
→
H
Fn
S
×
S
Assertion
rescval2
⊢
φ
→
D
=
C
↾
𝑠
S
sSet
Hom
⁡
ndx
H
Proof
Step
Hyp
Ref
Expression
1
rescval.1
⊢
D
=
C
↾
cat
H
2
rescval2.1
⊢
φ
→
C
∈
V
3
rescval2.2
⊢
φ
→
S
∈
W
4
rescval2.3
⊢
φ
→
H
Fn
S
×
S
5
3
3
xpexd
⊢
φ
→
S
×
S
∈
V
6
fnex
⊢
H
Fn
S
×
S
∧
S
×
S
∈
V
→
H
∈
V
7
4
5
6
syl2anc
⊢
φ
→
H
∈
V
8
1
rescval
⊢
C
∈
V
∧
H
∈
V
→
D
=
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H
9
2
7
8
syl2anc
⊢
φ
→
D
=
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H
10
4
fndmd
⊢
φ
→
dom
⁡
H
=
S
×
S
11
10
dmeqd
⊢
φ
→
dom
⁡
dom
⁡
H
=
dom
⁡
S
×
S
12
dmxpid
⊢
dom
⁡
S
×
S
=
S
13
11
12
eqtrdi
⊢
φ
→
dom
⁡
dom
⁡
H
=
S
14
13
oveq2d
⊢
φ
→
C
↾
𝑠
dom
⁡
dom
⁡
H
=
C
↾
𝑠
S
15
14
oveq1d
⊢
φ
→
C
↾
𝑠
dom
⁡
dom
⁡
H
sSet
Hom
⁡
ndx
H
=
C
↾
𝑠
S
sSet
Hom
⁡
ndx
H
16
9
15
eqtrd
⊢
φ
→
D
=
C
↾
𝑠
S
sSet
Hom
⁡
ndx
H