Metamath Proof Explorer


Theorem resdif

Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion resdif Fun F -1 F A : A onto C F B : B onto D F A B : A B 1-1 onto C D

Proof

Step Hyp Ref Expression
1 fofun F A : A onto C Fun F A
2 difss A B A
3 fof F A : A onto C F A : A C
4 3 fdmd F A : A onto C dom F A = A
5 2 4 sseqtrrid F A : A onto C A B dom F A
6 fores Fun F A A B dom F A F A A B : A B onto F A A B
7 1 5 6 syl2anc F A : A onto C F A A B : A B onto F A A B
8 resres F A A B = F A A B
9 indif A A B = A B
10 9 reseq2i F A A B = F A B
11 8 10 eqtri F A A B = F A B
12 foeq1 F A A B = F A B F A A B : A B onto F A A B F A B : A B onto F A A B
13 11 12 ax-mp F A A B : A B onto F A A B F A B : A B onto F A A B
14 11 rneqi ran F A A B = ran F A B
15 df-ima F A A B = ran F A A B
16 df-ima F A B = ran F A B
17 14 15 16 3eqtr4i F A A B = F A B
18 foeq3 F A A B = F A B F A B : A B onto F A A B F A B : A B onto F A B
19 17 18 ax-mp F A B : A B onto F A A B F A B : A B onto F A B
20 13 19 bitri F A A B : A B onto F A A B F A B : A B onto F A B
21 7 20 sylib F A : A onto C F A B : A B onto F A B
22 funres11 Fun F -1 Fun F A B -1
23 dff1o3 F A B : A B 1-1 onto F A B F A B : A B onto F A B Fun F A B -1
24 23 biimpri F A B : A B onto F A B Fun F A B -1 F A B : A B 1-1 onto F A B
25 21 22 24 syl2anr Fun F -1 F A : A onto C F A B : A B 1-1 onto F A B
26 25 3adant3 Fun F -1 F A : A onto C F B : B onto D F A B : A B 1-1 onto F A B
27 df-ima F A = ran F A
28 forn F A : A onto C ran F A = C
29 27 28 eqtrid F A : A onto C F A = C
30 df-ima F B = ran F B
31 forn F B : B onto D ran F B = D
32 30 31 eqtrid F B : B onto D F B = D
33 29 32 anim12i F A : A onto C F B : B onto D F A = C F B = D
34 imadif Fun F -1 F A B = F A F B
35 difeq12 F A = C F B = D F A F B = C D
36 34 35 sylan9eq Fun F -1 F A = C F B = D F A B = C D
37 33 36 sylan2 Fun F -1 F A : A onto C F B : B onto D F A B = C D
38 37 3impb Fun F -1 F A : A onto C F B : B onto D F A B = C D
39 38 f1oeq3d Fun F -1 F A : A onto C F B : B onto D F A B : A B 1-1 onto F A B F A B : A B 1-1 onto C D
40 26 39 mpbid Fun F -1 F A : A onto C F B : B onto D F A B : A B 1-1 onto C D