Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resdifcom
Next ⟩
resiun1
Metamath Proof Explorer
Ascii
Unicode
Theorem
resdifcom
Description:
Commutative law for restriction and difference.
(Contributed by
AV
, 7-Jun-2021)
Ref
Expression
Assertion
resdifcom
⊢
A
↾
B
∖
C
=
A
∖
C
↾
B
Proof
Step
Hyp
Ref
Expression
1
indif1
⊢
A
∖
C
∩
B
×
V
=
A
∩
B
×
V
∖
C
2
df-res
⊢
A
∖
C
↾
B
=
A
∖
C
∩
B
×
V
3
df-res
⊢
A
↾
B
=
A
∩
B
×
V
4
3
difeq1i
⊢
A
↾
B
∖
C
=
A
∩
B
×
V
∖
C
5
1
2
4
3eqtr4ri
⊢
A
↾
B
∖
C
=
A
∖
C
↾
B