Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resdm
Next ⟩
resexg
Metamath Proof Explorer
Ascii
Unicode
Theorem
resdm
Description:
A relation restricted to its domain equals itself.
(Contributed by
NM
, 12-Dec-2006)
Ref
Expression
Assertion
resdm
⊢
Rel
⁡
A
→
A
↾
dom
⁡
A
=
A
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
dom
⁡
A
⊆
dom
⁡
A
2
relssres
⊢
Rel
⁡
A
∧
dom
⁡
A
⊆
dom
⁡
A
→
A
↾
dom
⁡
A
=
A
3
1
2
mpan2
⊢
Rel
⁡
A
→
A
↾
dom
⁡
A
=
A