Metamath Proof Explorer


Theorem resdm2

Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007)

Ref Expression
Assertion resdm2 A dom A = A -1 -1

Proof

Step Hyp Ref Expression
1 rescnvcnv A -1 -1 dom A -1 -1 = A dom A -1 -1
2 relcnv Rel A -1 -1
3 resdm Rel A -1 -1 A -1 -1 dom A -1 -1 = A -1 -1
4 2 3 ax-mp A -1 -1 dom A -1 -1 = A -1 -1
5 dmcnvcnv dom A -1 -1 = dom A
6 5 reseq2i A dom A -1 -1 = A dom A
7 1 4 6 3eqtr3ri A dom A = A -1 -1