Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resdmres
Next ⟩
resresdm
Metamath Proof Explorer
Ascii
Unicode
Theorem
resdmres
Description:
Restriction to the domain of a restriction.
(Contributed by
NM
, 8-Apr-2007)
Ref
Expression
Assertion
resdmres
⊢
A
↾
dom
⁡
A
↾
B
=
A
↾
B
Proof
Step
Hyp
Ref
Expression
1
in12
⊢
A
∩
B
×
V
∩
dom
⁡
A
×
V
=
B
×
V
∩
A
∩
dom
⁡
A
×
V
2
df-res
⊢
A
↾
dom
⁡
A
=
A
∩
dom
⁡
A
×
V
3
resdm2
⊢
A
↾
dom
⁡
A
=
A
-1
-1
4
2
3
eqtr3i
⊢
A
∩
dom
⁡
A
×
V
=
A
-1
-1
5
4
ineq2i
⊢
B
×
V
∩
A
∩
dom
⁡
A
×
V
=
B
×
V
∩
A
-1
-1
6
incom
⊢
B
×
V
∩
A
-1
-1
=
A
-1
-1
∩
B
×
V
7
1
5
6
3eqtri
⊢
A
∩
B
×
V
∩
dom
⁡
A
×
V
=
A
-1
-1
∩
B
×
V
8
df-res
⊢
A
↾
dom
⁡
A
↾
B
=
A
∩
dom
⁡
A
↾
B
×
V
9
dmres
⊢
dom
⁡
A
↾
B
=
B
∩
dom
⁡
A
10
9
xpeq1i
⊢
dom
⁡
A
↾
B
×
V
=
B
∩
dom
⁡
A
×
V
11
xpindir
⊢
B
∩
dom
⁡
A
×
V
=
B
×
V
∩
dom
⁡
A
×
V
12
10
11
eqtri
⊢
dom
⁡
A
↾
B
×
V
=
B
×
V
∩
dom
⁡
A
×
V
13
12
ineq2i
⊢
A
∩
dom
⁡
A
↾
B
×
V
=
A
∩
B
×
V
∩
dom
⁡
A
×
V
14
8
13
eqtri
⊢
A
↾
dom
⁡
A
↾
B
=
A
∩
B
×
V
∩
dom
⁡
A
×
V
15
df-res
⊢
A
-1
-1
↾
B
=
A
-1
-1
∩
B
×
V
16
7
14
15
3eqtr4i
⊢
A
↾
dom
⁡
A
↾
B
=
A
-1
-1
↾
B
17
rescnvcnv
⊢
A
-1
-1
↾
B
=
A
↾
B
18
16
17
eqtri
⊢
A
↾
dom
⁡
A
↾
B
=
A
↾
B