Metamath Proof Explorer


Theorem resdmres

Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007)

Ref Expression
Assertion resdmres A dom A B = A B

Proof

Step Hyp Ref Expression
1 in12 A B × V dom A × V = B × V A dom A × V
2 df-res A dom A = A dom A × V
3 resdm2 A dom A = A -1 -1
4 2 3 eqtr3i A dom A × V = A -1 -1
5 4 ineq2i B × V A dom A × V = B × V A -1 -1
6 incom B × V A -1 -1 = A -1 -1 B × V
7 1 5 6 3eqtri A B × V dom A × V = A -1 -1 B × V
8 df-res A dom A B = A dom A B × V
9 dmres dom A B = B dom A
10 9 xpeq1i dom A B × V = B dom A × V
11 xpindir B dom A × V = B × V dom A × V
12 10 11 eqtri dom A B × V = B × V dom A × V
13 12 ineq2i A dom A B × V = A B × V dom A × V
14 8 13 eqtri A dom A B = A B × V dom A × V
15 df-res A -1 -1 B = A -1 -1 B × V
16 7 14 15 3eqtr4i A dom A B = A -1 -1 B
17 rescnvcnv A -1 -1 B = A B
18 16 17 eqtri A dom A B = A B