Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
reseq12i
Next ⟩
reseq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
reseq12i
Description:
Equality inference for restrictions.
(Contributed by
NM
, 21-Oct-2014)
Ref
Expression
Hypotheses
reseqi.1
⊢
A
=
B
reseqi.2
⊢
C
=
D
Assertion
reseq12i
⊢
A
↾
C
=
B
↾
D
Proof
Step
Hyp
Ref
Expression
1
reseqi.1
⊢
A
=
B
2
reseqi.2
⊢
C
=
D
3
1
reseq1i
⊢
A
↾
C
=
B
↾
C
4
2
reseq2i
⊢
B
↾
C
=
B
↾
D
5
3
4
eqtri
⊢
A
↾
C
=
B
↾
D