Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
reseq1i
Next ⟩
reseq2i
Metamath Proof Explorer
Ascii
Unicode
Theorem
reseq1i
Description:
Equality inference for restrictions.
(Contributed by
NM
, 21-Oct-2014)
Ref
Expression
Hypothesis
reseqi.1
⊢
A
=
B
Assertion
reseq1i
⊢
A
↾
C
=
B
↾
C
Proof
Step
Hyp
Ref
Expression
1
reseqi.1
⊢
A
=
B
2
reseq1
⊢
A
=
B
→
A
↾
C
=
B
↾
C
3
1
2
ax-mp
⊢
A
↾
C
=
B
↾
C