Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
reseq2i
Next ⟩
reseq12i
Metamath Proof Explorer
Ascii
Unicode
Theorem
reseq2i
Description:
Equality inference for restrictions.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Hypothesis
reseqi.1
⊢
A
=
B
Assertion
reseq2i
⊢
C
↾
A
=
C
↾
B
Proof
Step
Hyp
Ref
Expression
1
reseqi.1
⊢
A
=
B
2
reseq2
⊢
A
=
B
→
C
↾
A
=
C
↾
B
3
1
2
ax-mp
⊢
C
↾
A
=
C
↾
B