Metamath Proof Explorer


Theorem resf1st

Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resf1st.f φ F V
resf1st.h φ H W
resf1st.s φ H Fn S × S
Assertion resf1st φ 1 st F f H = 1 st F S

Proof

Step Hyp Ref Expression
1 resf1st.f φ F V
2 resf1st.h φ H W
3 resf1st.s φ H Fn S × S
4 1 2 resfval φ F f H = 1 st F dom dom H z dom H 2 nd F z H z
5 4 fveq2d φ 1 st F f H = 1 st 1 st F dom dom H z dom H 2 nd F z H z
6 fvex 1 st F V
7 6 resex 1 st F dom dom H V
8 dmexg H W dom H V
9 mptexg dom H V z dom H 2 nd F z H z V
10 2 8 9 3syl φ z dom H 2 nd F z H z V
11 op1stg 1 st F dom dom H V z dom H 2 nd F z H z V 1 st 1 st F dom dom H z dom H 2 nd F z H z = 1 st F dom dom H
12 7 10 11 sylancr φ 1 st 1 st F dom dom H z dom H 2 nd F z H z = 1 st F dom dom H
13 3 fndmd φ dom H = S × S
14 13 dmeqd φ dom dom H = dom S × S
15 dmxpid dom S × S = S
16 14 15 eqtrdi φ dom dom H = S
17 16 reseq2d φ 1 st F dom dom H = 1 st F S
18 5 12 17 3eqtrd φ 1 st F f H = 1 st F S