Metamath Proof Explorer


Theorem resfifsupp

Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019)

Ref Expression
Hypotheses resfifsupp.f φ Fun F
resfifsupp.x φ X Fin
resfifsupp.z φ Z V
Assertion resfifsupp φ finSupp Z F X

Proof

Step Hyp Ref Expression
1 resfifsupp.f φ Fun F
2 resfifsupp.x φ X Fin
3 resfifsupp.z φ Z V
4 funrel Fun F Rel F
5 1 4 syl φ Rel F
6 resindm Rel F F X dom F = F X
7 5 6 syl φ F X dom F = F X
8 1 funfnd φ F Fn dom F
9 fnresin2 F Fn dom F F X dom F Fn X dom F
10 8 9 syl φ F X dom F Fn X dom F
11 infi X Fin X dom F Fin
12 2 11 syl φ X dom F Fin
13 10 12 3 fndmfifsupp φ finSupp Z F X dom F
14 7 13 eqbrtrrd φ finSupp Z F X