Metamath Proof Explorer


Theorem resfsupp

Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019)

Ref Expression
Hypotheses resfsupp.b φ dom F B Fin
resfsupp.e φ F W
resfsupp.f φ Fun F
resfsupp.g φ G = F B
resfsupp.s φ finSupp Z G
resfsupp.z φ Z V
Assertion resfsupp φ finSupp Z F

Proof

Step Hyp Ref Expression
1 resfsupp.b φ dom F B Fin
2 resfsupp.e φ F W
3 resfsupp.f φ Fun F
4 resfsupp.g φ G = F B
5 resfsupp.s φ finSupp Z G
6 resfsupp.z φ Z V
7 5 fsuppimpd φ G supp Z Fin
8 1 2 4 7 6 ressuppfi φ F supp Z Fin
9 funisfsupp Fun F F W Z V finSupp Z F F supp Z Fin
10 3 2 6 9 syl3anc φ finSupp Z F F supp Z Fin
11 8 10 mpbird φ finSupp Z F