Metamath Proof Explorer


Theorem resfunexgALT

Description: Alternate proof of resfunexg , shorter but requiring ax-pow and ax-un . (Contributed by NM, 7-Apr-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion resfunexgALT Fun A B C A B V

Proof

Step Hyp Ref Expression
1 dmresexg B C dom A B V
2 1 adantl Fun A B C dom A B V
3 df-ima A B = ran A B
4 funimaexg Fun A B C A B V
5 3 4 eqeltrrid Fun A B C ran A B V
6 2 5 jca Fun A B C dom A B V ran A B V
7 xpexg dom A B V ran A B V dom A B × ran A B V
8 relres Rel A B
9 relssdmrn Rel A B A B dom A B × ran A B
10 8 9 ax-mp A B dom A B × ran A B
11 ssexg A B dom A B × ran A B dom A B × ran A B V A B V
12 10 11 mpan dom A B × ran A B V A B V
13 6 7 12 3syl Fun A B C A B V