Metamath Proof Explorer


Theorem resfval

Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resfval.c φ F V
resfval.d φ H W
Assertion resfval φ F f H = 1 st F dom dom H x dom H 2 nd F x H x

Proof

Step Hyp Ref Expression
1 resfval.c φ F V
2 resfval.d φ H W
3 df-resf f = f V , h V 1 st f dom dom h x dom h 2 nd f x h x
4 3 a1i φ f = f V , h V 1 st f dom dom h x dom h 2 nd f x h x
5 simprl φ f = F h = H f = F
6 5 fveq2d φ f = F h = H 1 st f = 1 st F
7 simprr φ f = F h = H h = H
8 7 dmeqd φ f = F h = H dom h = dom H
9 8 dmeqd φ f = F h = H dom dom h = dom dom H
10 6 9 reseq12d φ f = F h = H 1 st f dom dom h = 1 st F dom dom H
11 5 fveq2d φ f = F h = H 2 nd f = 2 nd F
12 11 fveq1d φ f = F h = H 2 nd f x = 2 nd F x
13 7 fveq1d φ f = F h = H h x = H x
14 12 13 reseq12d φ f = F h = H 2 nd f x h x = 2 nd F x H x
15 8 14 mpteq12dv φ f = F h = H x dom h 2 nd f x h x = x dom H 2 nd F x H x
16 10 15 opeq12d φ f = F h = H 1 st f dom dom h x dom h 2 nd f x h x = 1 st F dom dom H x dom H 2 nd F x H x
17 1 elexd φ F V
18 2 elexd φ H V
19 opex 1 st F dom dom H x dom H 2 nd F x H x V
20 19 a1i φ 1 st F dom dom H x dom H 2 nd F x H x V
21 4 16 17 18 20 ovmpod φ F f H = 1 st F dom dom H x dom H 2 nd F x H x