Step |
Hyp |
Ref |
Expression |
1 |
|
resghm.u |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
1
|
subggrp |
|
7 |
6
|
adantl |
|
8 |
|
ghmgrp2 |
|
9 |
8
|
adantr |
|
10 |
|
eqid |
|
11 |
10 3
|
ghmf |
|
12 |
10
|
subgss |
|
13 |
|
fssres |
|
14 |
11 12 13
|
syl2an |
|
15 |
12
|
adantl |
|
16 |
1 10
|
ressbas2 |
|
17 |
15 16
|
syl |
|
18 |
17
|
feq2d |
|
19 |
14 18
|
mpbid |
|
20 |
|
eleq2 |
|
21 |
|
eleq2 |
|
22 |
20 21
|
anbi12d |
|
23 |
17 22
|
syl |
|
24 |
23
|
biimpar |
|
25 |
|
simpll |
|
26 |
15
|
sselda |
|
27 |
26
|
adantrr |
|
28 |
15
|
sselda |
|
29 |
28
|
adantrl |
|
30 |
|
eqid |
|
31 |
10 30 5
|
ghmlin |
|
32 |
25 27 29 31
|
syl3anc |
|
33 |
1 30
|
ressplusg |
|
34 |
33
|
ad2antlr |
|
35 |
34
|
oveqd |
|
36 |
35
|
fveq2d |
|
37 |
30
|
subgcl |
|
38 |
37
|
3expb |
|
39 |
38
|
adantll |
|
40 |
39
|
fvresd |
|
41 |
36 40
|
eqtr3d |
|
42 |
|
fvres |
|
43 |
|
fvres |
|
44 |
42 43
|
oveqan12d |
|
45 |
44
|
adantl |
|
46 |
32 41 45
|
3eqtr4d |
|
47 |
24 46
|
syldan |
|
48 |
2 3 4 5 7 9 19 47
|
isghmd |
|