Metamath Proof Explorer


Theorem resghm

Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypothesis resghm.u U = S 𝑠 X
Assertion resghm F S GrpHom T X SubGrp S F X U GrpHom T

Proof

Step Hyp Ref Expression
1 resghm.u U = S 𝑠 X
2 eqid Base U = Base U
3 eqid Base T = Base T
4 eqid + U = + U
5 eqid + T = + T
6 1 subggrp X SubGrp S U Grp
7 6 adantl F S GrpHom T X SubGrp S U Grp
8 ghmgrp2 F S GrpHom T T Grp
9 8 adantr F S GrpHom T X SubGrp S T Grp
10 eqid Base S = Base S
11 10 3 ghmf F S GrpHom T F : Base S Base T
12 10 subgss X SubGrp S X Base S
13 fssres F : Base S Base T X Base S F X : X Base T
14 11 12 13 syl2an F S GrpHom T X SubGrp S F X : X Base T
15 12 adantl F S GrpHom T X SubGrp S X Base S
16 1 10 ressbas2 X Base S X = Base U
17 15 16 syl F S GrpHom T X SubGrp S X = Base U
18 17 feq2d F S GrpHom T X SubGrp S F X : X Base T F X : Base U Base T
19 14 18 mpbid F S GrpHom T X SubGrp S F X : Base U Base T
20 eleq2 X = Base U a X a Base U
21 eleq2 X = Base U b X b Base U
22 20 21 anbi12d X = Base U a X b X a Base U b Base U
23 17 22 syl F S GrpHom T X SubGrp S a X b X a Base U b Base U
24 23 biimpar F S GrpHom T X SubGrp S a Base U b Base U a X b X
25 simpll F S GrpHom T X SubGrp S a X b X F S GrpHom T
26 15 sselda F S GrpHom T X SubGrp S a X a Base S
27 26 adantrr F S GrpHom T X SubGrp S a X b X a Base S
28 15 sselda F S GrpHom T X SubGrp S b X b Base S
29 28 adantrl F S GrpHom T X SubGrp S a X b X b Base S
30 eqid + S = + S
31 10 30 5 ghmlin F S GrpHom T a Base S b Base S F a + S b = F a + T F b
32 25 27 29 31 syl3anc F S GrpHom T X SubGrp S a X b X F a + S b = F a + T F b
33 1 30 ressplusg X SubGrp S + S = + U
34 33 ad2antlr F S GrpHom T X SubGrp S a X b X + S = + U
35 34 oveqd F S GrpHom T X SubGrp S a X b X a + S b = a + U b
36 35 fveq2d F S GrpHom T X SubGrp S a X b X F X a + S b = F X a + U b
37 30 subgcl X SubGrp S a X b X a + S b X
38 37 3expb X SubGrp S a X b X a + S b X
39 38 adantll F S GrpHom T X SubGrp S a X b X a + S b X
40 39 fvresd F S GrpHom T X SubGrp S a X b X F X a + S b = F a + S b
41 36 40 eqtr3d F S GrpHom T X SubGrp S a X b X F X a + U b = F a + S b
42 fvres a X F X a = F a
43 fvres b X F X b = F b
44 42 43 oveqan12d a X b X F X a + T F X b = F a + T F b
45 44 adantl F S GrpHom T X SubGrp S a X b X F X a + T F X b = F a + T F b
46 32 41 45 3eqtr4d F S GrpHom T X SubGrp S a X b X F X a + U b = F X a + T F X b
47 24 46 syldan F S GrpHom T X SubGrp S a Base U b Base U F X a + U b = F X a + T F X b
48 2 3 4 5 7 9 19 47 isghmd F S GrpHom T X SubGrp S F X U GrpHom T