Metamath Proof Explorer


Theorem resghm2

Description: One direction of resghm2b . (Contributed by Mario Carneiro, 13-Jan-2015) (Revised by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypothesis resghm2.u U=T𝑠X
Assertion resghm2 FSGrpHomUXSubGrpTFSGrpHomT

Proof

Step Hyp Ref Expression
1 resghm2.u U=T𝑠X
2 ghmmhm FSGrpHomUFSMndHomU
3 subgsubm XSubGrpTXSubMndT
4 1 resmhm2 FSMndHomUXSubMndTFSMndHomT
5 2 3 4 syl2an FSGrpHomUXSubGrpTFSMndHomT
6 ghmgrp1 FSGrpHomUSGrp
7 subgrcl XSubGrpTTGrp
8 ghmmhmb SGrpTGrpSGrpHomT=SMndHomT
9 6 7 8 syl2an FSGrpHomUXSubGrpTSGrpHomT=SMndHomT
10 5 9 eleqtrrd FSGrpHomUXSubGrpTFSGrpHomT