Metamath Proof Explorer


Theorem resghm2

Description: One direction of resghm2b . (Contributed by Mario Carneiro, 13-Jan-2015) (Revised by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypothesis resghm2.u U = T 𝑠 X
Assertion resghm2 F S GrpHom U X SubGrp T F S GrpHom T

Proof

Step Hyp Ref Expression
1 resghm2.u U = T 𝑠 X
2 ghmmhm F S GrpHom U F S MndHom U
3 subgsubm X SubGrp T X SubMnd T
4 1 resmhm2 F S MndHom U X SubMnd T F S MndHom T
5 2 3 4 syl2an F S GrpHom U X SubGrp T F S MndHom T
6 ghmgrp1 F S GrpHom U S Grp
7 subgrcl X SubGrp T T Grp
8 ghmmhmb S Grp T Grp S GrpHom T = S MndHom T
9 6 7 8 syl2an F S GrpHom U X SubGrp T S GrpHom T = S MndHom T
10 5 9 eleqtrrd F S GrpHom U X SubGrp T F S GrpHom T