Metamath Proof Explorer


Theorem resghm2b

Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015) (Revised by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypothesis resghm2.u U = T 𝑠 X
Assertion resghm2b X SubGrp T ran F X F S GrpHom T F S GrpHom U

Proof

Step Hyp Ref Expression
1 resghm2.u U = T 𝑠 X
2 ghmgrp1 F S GrpHom T S Grp
3 2 a1i X SubGrp T ran F X F S GrpHom T S Grp
4 ghmgrp1 F S GrpHom U S Grp
5 4 a1i X SubGrp T ran F X F S GrpHom U S Grp
6 subgsubm X SubGrp T X SubMnd T
7 1 resmhm2b X SubMnd T ran F X F S MndHom T F S MndHom U
8 6 7 sylan X SubGrp T ran F X F S MndHom T F S MndHom U
9 8 adantl S Grp X SubGrp T ran F X F S MndHom T F S MndHom U
10 subgrcl X SubGrp T T Grp
11 10 adantr X SubGrp T ran F X T Grp
12 ghmmhmb S Grp T Grp S GrpHom T = S MndHom T
13 11 12 sylan2 S Grp X SubGrp T ran F X S GrpHom T = S MndHom T
14 13 eleq2d S Grp X SubGrp T ran F X F S GrpHom T F S MndHom T
15 1 subggrp X SubGrp T U Grp
16 15 adantr X SubGrp T ran F X U Grp
17 ghmmhmb S Grp U Grp S GrpHom U = S MndHom U
18 16 17 sylan2 S Grp X SubGrp T ran F X S GrpHom U = S MndHom U
19 18 eleq2d S Grp X SubGrp T ran F X F S GrpHom U F S MndHom U
20 9 14 19 3bitr4d S Grp X SubGrp T ran F X F S GrpHom T F S GrpHom U
21 20 expcom X SubGrp T ran F X S Grp F S GrpHom T F S GrpHom U
22 3 5 21 pm5.21ndd X SubGrp T ran F X F S GrpHom T F S GrpHom U