Metamath Proof Explorer


Theorem resgrpplusfrn

Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses resgrpplusfrn.b B = Base G
resgrpplusfrn.h H = G 𝑠 S
resgrpplusfrn.o F = + 𝑓 H
Assertion resgrpplusfrn H Grp S B S = ran F

Proof

Step Hyp Ref Expression
1 resgrpplusfrn.b B = Base G
2 resgrpplusfrn.h H = G 𝑠 S
3 resgrpplusfrn.o F = + 𝑓 H
4 eqid Base H = Base H
5 4 3 grpplusfo H Grp F : Base H × Base H onto Base H
6 5 adantr H Grp S B F : Base H × Base H onto Base H
7 eqidd H Grp S B F = F
8 2 1 ressbas2 S B S = Base H
9 8 adantl H Grp S B S = Base H
10 9 sqxpeqd H Grp S B S × S = Base H × Base H
11 7 10 9 foeq123d H Grp S B F : S × S onto S F : Base H × Base H onto Base H
12 6 11 mpbird H Grp S B F : S × S onto S
13 forn F : S × S onto S ran F = S
14 13 eqcomd F : S × S onto S S = ran F
15 12 14 syl H Grp S B S = ran F