Metamath Proof Explorer


Theorem residfi

Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion residfi I A Fin A Fin

Proof

Step Hyp Ref Expression
1 dmresi dom I A = A
2 dmfi I A Fin dom I A Fin
3 1 2 eqeltrrid I A Fin A Fin
4 funi Fun I
5 funfn Fun I I Fn dom I
6 4 5 mpbi I Fn dom I
7 resfnfinfin I Fn dom I A Fin I A Fin
8 6 7 mpan A Fin I A Fin
9 3 8 impbii I A Fin A Fin