Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
residm
Next ⟩
resima
Metamath Proof Explorer
Ascii
Unicode
Theorem
residm
Description:
Idempotent law for restriction.
(Contributed by
NM
, 27-Mar-1998)
Ref
Expression
Assertion
residm
⊢
A
↾
B
↾
B
=
A
↾
B
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
B
⊆
B
2
resabs2
⊢
B
⊆
B
→
A
↾
B
↾
B
=
A
↾
B
3
1
2
ax-mp
⊢
A
↾
B
↾
B
=
A
↾
B