Metamath Proof Explorer


Theorem residpr

Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018)

Ref Expression
Assertion residpr A V B W I A B = A A B B

Proof

Step Hyp Ref Expression
1 df-pr A B = A B
2 1 reseq2i I A B = I A B
3 resundi I A B = I A I B
4 2 3 eqtri I A B = I A I B
5 xpsng A V A V A × A = A A
6 5 anidms A V A × A = A A
7 6 adantr A V B W A × A = A A
8 xpsng B W B W B × B = B B
9 8 anidms B W B × B = B B
10 9 adantl A V B W B × B = B B
11 7 10 uneq12d A V B W A × A B × B = A A B B
12 restidsing I A = A × A
13 restidsing I B = B × B
14 12 13 uneq12i I A I B = A × A B × B
15 df-pr A A B B = A A B B
16 11 14 15 3eqtr4g A V B W I A I B = A A B B
17 4 16 eqtrid A V B W I A B = A A B B