Metamath Proof Explorer


Theorem resieq

Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004)

Ref Expression
Assertion resieq B A C A B I A C B = C

Proof

Step Hyp Ref Expression
1 breq2 x = C B I A x B I A C
2 eqeq2 x = C B = x B = C
3 1 2 bibi12d x = C B I A x B = x B I A C B = C
4 3 imbi2d x = C B A B I A x B = x B A B I A C B = C
5 vex x V
6 5 opres B A B x I A B x I
7 df-br B I A x B x I A
8 5 ideq B I x B = x
9 df-br B I x B x I
10 8 9 bitr3i B = x B x I
11 6 7 10 3bitr4g B A B I A x B = x
12 4 11 vtoclg C A B A B I A C B = C
13 12 impcom B A C A B I A C B = C