Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resiima
Next ⟩
ima0
Metamath Proof Explorer
Ascii
Unicode
Theorem
resiima
Description:
The image of a restriction of the identity function.
(Contributed by
FL
, 31-Dec-2006)
Ref
Expression
Assertion
resiima
⊢
B
⊆
A
→
I
↾
A
B
=
B
Proof
Step
Hyp
Ref
Expression
1
df-ima
⊢
I
↾
A
B
=
ran
⁡
I
↾
A
↾
B
2
1
a1i
⊢
B
⊆
A
→
I
↾
A
B
=
ran
⁡
I
↾
A
↾
B
3
resabs1
⊢
B
⊆
A
→
I
↾
A
↾
B
=
I
↾
B
4
3
rneqd
⊢
B
⊆
A
→
ran
⁡
I
↾
A
↾
B
=
ran
⁡
I
↾
B
5
rnresi
⊢
ran
⁡
I
↾
B
=
B
6
5
a1i
⊢
B
⊆
A
→
ran
⁡
I
↾
B
=
B
7
2
4
6
3eqtrd
⊢
B
⊆
A
→
I
↾
A
B
=
B