Metamath Proof Explorer


Theorem resin

Description: The restriction of a one-to-one onto function to an intersection maps onto the intersection of the images. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion resin Fun F -1 F A : A onto C F B : B onto D F A B : A B 1-1 onto C D

Proof

Step Hyp Ref Expression
1 resdif Fun F -1 F A : A onto C F B : B onto D F A B : A B 1-1 onto C D
2 f1ofo F A B : A B 1-1 onto C D F A B : A B onto C D
3 1 2 syl Fun F -1 F A : A onto C F B : B onto D F A B : A B onto C D
4 resdif Fun F -1 F A : A onto C F A B : A B onto C D F A A B : A A B 1-1 onto C C D
5 3 4 syld3an3 Fun F -1 F A : A onto C F B : B onto D F A A B : A A B 1-1 onto C C D
6 dfin4 C D = C C D
7 f1oeq3 C D = C C D F A B : A B 1-1 onto C D F A B : A B 1-1 onto C C D
8 6 7 ax-mp F A B : A B 1-1 onto C D F A B : A B 1-1 onto C C D
9 dfin4 A B = A A B
10 f1oeq2 A B = A A B F A B : A B 1-1 onto C C D F A B : A A B 1-1 onto C C D
11 9 10 ax-mp F A B : A B 1-1 onto C C D F A B : A A B 1-1 onto C C D
12 9 reseq2i F A B = F A A B
13 f1oeq1 F A B = F A A B F A B : A A B 1-1 onto C C D F A A B : A A B 1-1 onto C C D
14 12 13 ax-mp F A B : A A B 1-1 onto C C D F A A B : A A B 1-1 onto C C D
15 8 11 14 3bitrri F A A B : A A B 1-1 onto C C D F A B : A B 1-1 onto C D
16 5 15 sylib Fun F -1 F A : A onto C F B : B onto D F A B : A B 1-1 onto C D