Metamath Proof Explorer


Theorem resin4p

Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis efi4p.1 F = n 0 i A n n !
Assertion resin4p A sin A = A - A 3 6 + k 4 F k

Proof

Step Hyp Ref Expression
1 efi4p.1 F = n 0 i A n n !
2 resinval A sin A = e i A
3 recn A A
4 1 efi4p A e i A = 1 A 2 2 + i A A 3 6 + k 4 F k
5 3 4 syl A e i A = 1 A 2 2 + i A A 3 6 + k 4 F k
6 5 fveq2d A e i A = 1 A 2 2 + i A A 3 6 + k 4 F k
7 1re 1
8 resqcl A A 2
9 8 rehalfcld A A 2 2
10 resubcl 1 A 2 2 1 A 2 2
11 7 9 10 sylancr A 1 A 2 2
12 11 recnd A 1 A 2 2
13 ax-icn i
14 3nn0 3 0
15 reexpcl A 3 0 A 3
16 14 15 mpan2 A A 3
17 6re 6
18 6pos 0 < 6
19 17 18 gt0ne0ii 6 0
20 redivcl A 3 6 6 0 A 3 6
21 17 19 20 mp3an23 A 3 A 3 6
22 16 21 syl A A 3 6
23 resubcl A A 3 6 A A 3 6
24 22 23 mpdan A A A 3 6
25 24 recnd A A A 3 6
26 mulcl i A A 3 6 i A A 3 6
27 13 25 26 sylancr A i A A 3 6
28 12 27 addcld A 1 - A 2 2 + i A A 3 6
29 mulcl i A i A
30 13 3 29 sylancr A i A
31 4nn0 4 0
32 1 eftlcl i A 4 0 k 4 F k
33 30 31 32 sylancl A k 4 F k
34 28 33 imaddd A 1 A 2 2 + i A A 3 6 + k 4 F k = 1 - A 2 2 + i A A 3 6 + k 4 F k
35 11 24 crimd A 1 - A 2 2 + i A A 3 6 = A A 3 6
36 35 oveq1d A 1 - A 2 2 + i A A 3 6 + k 4 F k = A - A 3 6 + k 4 F k
37 6 34 36 3eqtrd A e i A = A - A 3 6 + k 4 F k
38 2 37 eqtrd A sin A = A - A 3 6 + k 4 F k