Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resindi
Next ⟩
resindir
Metamath Proof Explorer
Ascii
Unicode
Theorem
resindi
Description:
Class restriction distributes over intersection.
(Contributed by
FL
, 6-Oct-2008)
Ref
Expression
Assertion
resindi
⊢
A
↾
B
∩
C
=
A
↾
B
∩
A
↾
C
Proof
Step
Hyp
Ref
Expression
1
xpindir
⊢
B
∩
C
×
V
=
B
×
V
∩
C
×
V
2
1
ineq2i
⊢
A
∩
B
∩
C
×
V
=
A
∩
B
×
V
∩
C
×
V
3
inindi
⊢
A
∩
B
×
V
∩
C
×
V
=
A
∩
B
×
V
∩
A
∩
C
×
V
4
2
3
eqtri
⊢
A
∩
B
∩
C
×
V
=
A
∩
B
×
V
∩
A
∩
C
×
V
5
df-res
⊢
A
↾
B
∩
C
=
A
∩
B
∩
C
×
V
6
df-res
⊢
A
↾
B
=
A
∩
B
×
V
7
df-res
⊢
A
↾
C
=
A
∩
C
×
V
8
6
7
ineq12i
⊢
A
↾
B
∩
A
↾
C
=
A
∩
B
×
V
∩
A
∩
C
×
V
9
4
5
8
3eqtr4i
⊢
A
↾
B
∩
C
=
A
↾
B
∩
A
↾
C