Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resindir
Next ⟩
inres
Metamath Proof Explorer
Ascii
Unicode
Theorem
resindir
Description:
Class restriction distributes over intersection.
(Contributed by
NM
, 18-Dec-2008)
Ref
Expression
Assertion
resindir
⊢
A
∩
B
↾
C
=
A
↾
C
∩
B
↾
C
Proof
Step
Hyp
Ref
Expression
1
inindir
⊢
A
∩
B
∩
C
×
V
=
A
∩
C
×
V
∩
B
∩
C
×
V
2
df-res
⊢
A
∩
B
↾
C
=
A
∩
B
∩
C
×
V
3
df-res
⊢
A
↾
C
=
A
∩
C
×
V
4
df-res
⊢
B
↾
C
=
B
∩
C
×
V
5
3
4
ineq12i
⊢
A
↾
C
∩
B
↾
C
=
A
∩
C
×
V
∩
B
∩
C
×
V
6
1
2
5
3eqtr4i
⊢
A
∩
B
↾
C
=
A
↾
C
∩
B
↾
C