Metamath Proof Explorer


Theorem resiun2

Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion resiun2 C x A B = x A C B

Proof

Step Hyp Ref Expression
1 df-res C x A B = C x A B × V
2 df-res C B = C B × V
3 2 a1i x A C B = C B × V
4 3 iuneq2i x A C B = x A C B × V
5 xpiundir x A B × V = x A B × V
6 5 ineq2i C x A B × V = C x A B × V
7 iunin2 x A C B × V = C x A B × V
8 6 7 eqtr4i C x A B × V = x A C B × V
9 4 8 eqtr4i x A C B = C x A B × V
10 1 9 eqtr4i C x A B = x A C B