Metamath Proof Explorer


Theorem resixp

Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011) (Proof shortened by Mario Carneiro, 31-May-2014)

Ref Expression
Assertion resixp B A F x A C F B x B C

Proof

Step Hyp Ref Expression
1 resexg F x A C F B V
2 1 adantl B A F x A C F B V
3 simpr B A F x A C F x A C
4 elixp2 F x A C F V F Fn A x A F x C
5 3 4 sylib B A F x A C F V F Fn A x A F x C
6 5 simp2d B A F x A C F Fn A
7 simpl B A F x A C B A
8 fnssres F Fn A B A F B Fn B
9 6 7 8 syl2anc B A F x A C F B Fn B
10 5 simp3d B A F x A C x A F x C
11 ssralv B A x A F x C x B F x C
12 7 10 11 sylc B A F x A C x B F x C
13 fvres x B F B x = F x
14 13 eleq1d x B F B x C F x C
15 14 ralbiia x B F B x C x B F x C
16 12 15 sylibr B A F x A C x B F B x C
17 elixp2 F B x B C F B V F B Fn B x B F B x C
18 2 9 16 17 syl3anbrc B A F x A C F B x B C