Step |
Hyp |
Ref |
Expression |
1 |
|
resixpfo.1 |
|
2 |
|
resixp |
|
3 |
2 1
|
fmptd |
|
4 |
3
|
adantr |
|
5 |
|
n0 |
|
6 |
|
eleq1w |
|
7 |
6
|
ifbid |
|
8 |
|
id |
|
9 |
7 8
|
fveq12d |
|
10 |
9
|
cbvmptv |
|
11 |
|
vex |
|
12 |
11
|
elixp |
|
13 |
12
|
simprbi |
|
14 |
|
fveq1 |
|
15 |
14
|
eleq1d |
|
16 |
|
fveq1 |
|
17 |
16
|
eleq1d |
|
18 |
|
simpl |
|
19 |
18
|
imp |
|
20 |
|
simplrr |
|
21 |
15 17 19 20
|
ifbothda |
|
22 |
21
|
exp32 |
|
23 |
22
|
ralimi2 |
|
24 |
13 23
|
syl |
|
25 |
24
|
adantl |
|
26 |
|
ralim |
|
27 |
25 26
|
syl |
|
28 |
|
vex |
|
29 |
28
|
elixp |
|
30 |
29
|
simprbi |
|
31 |
27 30
|
impel |
|
32 |
|
n0i |
|
33 |
|
ixpprc |
|
34 |
32 33
|
nsyl2 |
|
35 |
34
|
adantl |
|
36 |
|
mptelixpg |
|
37 |
35 36
|
syl |
|
38 |
31 37
|
mpbird |
|
39 |
10 38
|
eqeltrid |
|
40 |
|
reseq1 |
|
41 |
|
iftrue |
|
42 |
41
|
fveq1d |
|
43 |
42
|
mpteq2ia |
|
44 |
|
resmpt |
|
45 |
44
|
ad2antrr |
|
46 |
|
ixpfn |
|
47 |
46
|
ad2antlr |
|
48 |
|
dffn5 |
|
49 |
47 48
|
sylib |
|
50 |
43 45 49
|
3eqtr4a |
|
51 |
50 11
|
eqeltrdi |
|
52 |
1 40 39 51
|
fvmptd3 |
|
53 |
52 50
|
eqtr2d |
|
54 |
|
fveq2 |
|
55 |
54
|
rspceeqv |
|
56 |
39 53 55
|
syl2anc |
|
57 |
56
|
ex |
|
58 |
57
|
ralrimdva |
|
59 |
58
|
exlimdv |
|
60 |
5 59
|
syl5bi |
|
61 |
60
|
imp |
|
62 |
|
dffo3 |
|
63 |
4 61 62
|
sylanbrc |
|