| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resixpfo.1 |
|
| 2 |
|
resixp |
|
| 3 |
2 1
|
fmptd |
|
| 4 |
3
|
adantr |
|
| 5 |
|
n0 |
|
| 6 |
|
eleq1w |
|
| 7 |
6
|
ifbid |
|
| 8 |
|
id |
|
| 9 |
7 8
|
fveq12d |
|
| 10 |
9
|
cbvmptv |
|
| 11 |
|
vex |
|
| 12 |
11
|
elixp |
|
| 13 |
12
|
simprbi |
|
| 14 |
|
fveq1 |
|
| 15 |
14
|
eleq1d |
|
| 16 |
|
fveq1 |
|
| 17 |
16
|
eleq1d |
|
| 18 |
|
simpl |
|
| 19 |
18
|
imp |
|
| 20 |
|
simplrr |
|
| 21 |
15 17 19 20
|
ifbothda |
|
| 22 |
21
|
exp32 |
|
| 23 |
22
|
ralimi2 |
|
| 24 |
13 23
|
syl |
|
| 25 |
24
|
adantl |
|
| 26 |
|
ralim |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
vex |
|
| 29 |
28
|
elixp |
|
| 30 |
29
|
simprbi |
|
| 31 |
27 30
|
impel |
|
| 32 |
|
n0i |
|
| 33 |
|
ixpprc |
|
| 34 |
32 33
|
nsyl2 |
|
| 35 |
34
|
adantl |
|
| 36 |
|
mptelixpg |
|
| 37 |
35 36
|
syl |
|
| 38 |
31 37
|
mpbird |
|
| 39 |
10 38
|
eqeltrid |
|
| 40 |
|
reseq1 |
|
| 41 |
|
iftrue |
|
| 42 |
41
|
fveq1d |
|
| 43 |
42
|
mpteq2ia |
|
| 44 |
|
resmpt |
|
| 45 |
44
|
ad2antrr |
|
| 46 |
|
ixpfn |
|
| 47 |
46
|
ad2antlr |
|
| 48 |
|
dffn5 |
|
| 49 |
47 48
|
sylib |
|
| 50 |
43 45 49
|
3eqtr4a |
|
| 51 |
50 11
|
eqeltrdi |
|
| 52 |
1 40 39 51
|
fvmptd3 |
|
| 53 |
52 50
|
eqtr2d |
|
| 54 |
|
fveq2 |
|
| 55 |
54
|
rspceeqv |
|
| 56 |
39 53 55
|
syl2anc |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
ralrimdva |
|
| 59 |
58
|
exlimdv |
|
| 60 |
5 59
|
biimtrid |
|
| 61 |
60
|
imp |
|
| 62 |
|
dffo3 |
|
| 63 |
4 61 62
|
sylanbrc |
|