Metamath Proof Explorer


Theorem reslmhm

Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses reslmhm.u U = LSubSp S
reslmhm.r R = S 𝑠 X
Assertion reslmhm F S LMHom T X U F X R LMHom T

Proof

Step Hyp Ref Expression
1 reslmhm.u U = LSubSp S
2 reslmhm.r R = S 𝑠 X
3 lmhmlmod1 F S LMHom T S LMod
4 2 1 lsslmod S LMod X U R LMod
5 3 4 sylan F S LMHom T X U R LMod
6 lmhmlmod2 F S LMHom T T LMod
7 6 adantr F S LMHom T X U T LMod
8 lmghm F S LMHom T F S GrpHom T
9 1 lsssubg S LMod X U X SubGrp S
10 3 9 sylan F S LMHom T X U X SubGrp S
11 2 resghm F S GrpHom T X SubGrp S F X R GrpHom T
12 8 10 11 syl2an2r F S LMHom T X U F X R GrpHom T
13 eqid Scalar S = Scalar S
14 eqid Scalar T = Scalar T
15 13 14 lmhmsca F S LMHom T Scalar T = Scalar S
16 2 13 resssca X U Scalar S = Scalar R
17 15 16 sylan9eq F S LMHom T X U Scalar T = Scalar R
18 simpll F S LMHom T X U a Base Scalar S b Base R F S LMHom T
19 simprl F S LMHom T X U a Base Scalar S b Base R a Base Scalar S
20 eqid Base S = Base S
21 20 1 lssss X U X Base S
22 21 adantl F S LMHom T X U X Base S
23 22 adantr F S LMHom T X U a Base Scalar S b Base R X Base S
24 2 20 ressbas2 X Base S X = Base R
25 22 24 syl F S LMHom T X U X = Base R
26 25 eleq2d F S LMHom T X U b X b Base R
27 26 biimpar F S LMHom T X U b Base R b X
28 27 adantrl F S LMHom T X U a Base Scalar S b Base R b X
29 23 28 sseldd F S LMHom T X U a Base Scalar S b Base R b Base S
30 eqid Base Scalar S = Base Scalar S
31 eqid S = S
32 eqid T = T
33 13 30 20 31 32 lmhmlin F S LMHom T a Base Scalar S b Base S F a S b = a T F b
34 18 19 29 33 syl3anc F S LMHom T X U a Base Scalar S b Base R F a S b = a T F b
35 3 adantr F S LMHom T X U S LMod
36 35 adantr F S LMHom T X U a Base Scalar S b Base R S LMod
37 simplr F S LMHom T X U a Base Scalar S b Base R X U
38 13 31 30 1 lssvscl S LMod X U a Base Scalar S b X a S b X
39 36 37 19 28 38 syl22anc F S LMHom T X U a Base Scalar S b Base R a S b X
40 39 fvresd F S LMHom T X U a Base Scalar S b Base R F X a S b = F a S b
41 fvres b X F X b = F b
42 41 oveq2d b X a T F X b = a T F b
43 28 42 syl F S LMHom T X U a Base Scalar S b Base R a T F X b = a T F b
44 34 40 43 3eqtr4d F S LMHom T X U a Base Scalar S b Base R F X a S b = a T F X b
45 44 ralrimivva F S LMHom T X U a Base Scalar S b Base R F X a S b = a T F X b
46 16 adantl F S LMHom T X U Scalar S = Scalar R
47 46 fveq2d F S LMHom T X U Base Scalar S = Base Scalar R
48 2 31 ressvsca X U S = R
49 48 adantl F S LMHom T X U S = R
50 49 oveqd F S LMHom T X U a S b = a R b
51 50 fveqeq2d F S LMHom T X U F X a S b = a T F X b F X a R b = a T F X b
52 51 ralbidv F S LMHom T X U b Base R F X a S b = a T F X b b Base R F X a R b = a T F X b
53 47 52 raleqbidv F S LMHom T X U a Base Scalar S b Base R F X a S b = a T F X b a Base Scalar R b Base R F X a R b = a T F X b
54 45 53 mpbid F S LMHom T X U a Base Scalar R b Base R F X a R b = a T F X b
55 12 17 54 3jca F S LMHom T X U F X R GrpHom T Scalar T = Scalar R a Base Scalar R b Base R F X a R b = a T F X b
56 eqid Scalar R = Scalar R
57 eqid Base Scalar R = Base Scalar R
58 eqid Base R = Base R
59 eqid R = R
60 56 14 57 58 59 32 islmhm F X R LMHom T R LMod T LMod F X R GrpHom T Scalar T = Scalar R a Base Scalar R b Base R F X a R b = a T F X b
61 5 7 55 60 syl21anbrc F S LMHom T X U F X R LMHom T