Metamath Proof Explorer


Theorem reslmhm2

Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Hypotheses reslmhm2.u U = T 𝑠 X
reslmhm2.l L = LSubSp T
Assertion reslmhm2 F S LMHom U T LMod X L F S LMHom T

Proof

Step Hyp Ref Expression
1 reslmhm2.u U = T 𝑠 X
2 reslmhm2.l L = LSubSp T
3 eqid Base S = Base S
4 eqid S = S
5 eqid T = T
6 eqid Scalar S = Scalar S
7 eqid Scalar T = Scalar T
8 eqid Base Scalar S = Base Scalar S
9 lmhmlmod1 F S LMHom U S LMod
10 9 3ad2ant1 F S LMHom U T LMod X L S LMod
11 simp2 F S LMHom U T LMod X L T LMod
12 1 7 resssca X L Scalar T = Scalar U
13 12 3ad2ant3 F S LMHom U T LMod X L Scalar T = Scalar U
14 eqid Scalar U = Scalar U
15 6 14 lmhmsca F S LMHom U Scalar U = Scalar S
16 15 3ad2ant1 F S LMHom U T LMod X L Scalar U = Scalar S
17 13 16 eqtrd F S LMHom U T LMod X L Scalar T = Scalar S
18 lmghm F S LMHom U F S GrpHom U
19 18 3ad2ant1 F S LMHom U T LMod X L F S GrpHom U
20 2 lsssubg T LMod X L X SubGrp T
21 20 3adant1 F S LMHom U T LMod X L X SubGrp T
22 1 resghm2 F S GrpHom U X SubGrp T F S GrpHom T
23 19 21 22 syl2anc F S LMHom U T LMod X L F S GrpHom T
24 eqid U = U
25 6 8 3 4 24 lmhmlin F S LMHom U x Base Scalar S y Base S F x S y = x U F y
26 25 3expb F S LMHom U x Base Scalar S y Base S F x S y = x U F y
27 26 3ad2antl1 F S LMHom U T LMod X L x Base Scalar S y Base S F x S y = x U F y
28 simpl3 F S LMHom U T LMod X L x Base Scalar S y Base S X L
29 1 5 ressvsca X L T = U
30 29 oveqd X L x T F y = x U F y
31 28 30 syl F S LMHom U T LMod X L x Base Scalar S y Base S x T F y = x U F y
32 27 31 eqtr4d F S LMHom U T LMod X L x Base Scalar S y Base S F x S y = x T F y
33 3 4 5 6 7 8 10 11 17 23 32 islmhmd F S LMHom U T LMod X L F S LMHom T