| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reslmhm2.u |  | 
						
							| 2 |  | reslmhm2.l |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | lmhmlmod1 |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 |  | simpl1 |  | 
						
							| 12 |  | simpl2 |  | 
						
							| 13 | 1 2 | lsslmod |  | 
						
							| 14 | 11 12 13 | syl2anc |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 1 15 | resssca |  | 
						
							| 17 | 16 | 3ad2ant2 |  | 
						
							| 18 | 6 15 | lmhmsca |  | 
						
							| 19 | 17 18 | sylan9req |  | 
						
							| 20 |  | lmghm |  | 
						
							| 21 | 2 | lsssubg |  | 
						
							| 22 | 1 | resghm2b |  | 
						
							| 23 | 21 22 | stoic3 |  | 
						
							| 24 | 23 | biimpa |  | 
						
							| 25 | 20 24 | sylan2 |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 6 8 3 4 26 | lmhmlin |  | 
						
							| 28 | 27 | 3expb |  | 
						
							| 29 | 28 | adantll |  | 
						
							| 30 |  | simpll2 |  | 
						
							| 31 | 1 26 | ressvsca |  | 
						
							| 32 | 31 | oveqd |  | 
						
							| 33 | 30 32 | syl |  | 
						
							| 34 | 29 33 | eqtrd |  | 
						
							| 35 | 3 4 5 6 7 8 10 14 19 25 34 | islmhmd |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 |  | simpl1 |  | 
						
							| 38 |  | simpl2 |  | 
						
							| 39 | 1 2 | reslmhm2 |  | 
						
							| 40 | 36 37 38 39 | syl3anc |  | 
						
							| 41 | 35 40 | impbida |  |