Metamath Proof Explorer


Theorem reslmhm2b

Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Hypotheses reslmhm2.u U = T 𝑠 X
reslmhm2.l L = LSubSp T
Assertion reslmhm2b T LMod X L ran F X F S LMHom T F S LMHom U

Proof

Step Hyp Ref Expression
1 reslmhm2.u U = T 𝑠 X
2 reslmhm2.l L = LSubSp T
3 eqid Base S = Base S
4 eqid S = S
5 eqid U = U
6 eqid Scalar S = Scalar S
7 eqid Scalar U = Scalar U
8 eqid Base Scalar S = Base Scalar S
9 lmhmlmod1 F S LMHom T S LMod
10 9 adantl T LMod X L ran F X F S LMHom T S LMod
11 simpl1 T LMod X L ran F X F S LMHom T T LMod
12 simpl2 T LMod X L ran F X F S LMHom T X L
13 1 2 lsslmod T LMod X L U LMod
14 11 12 13 syl2anc T LMod X L ran F X F S LMHom T U LMod
15 eqid Scalar T = Scalar T
16 1 15 resssca X L Scalar T = Scalar U
17 16 3ad2ant2 T LMod X L ran F X Scalar T = Scalar U
18 6 15 lmhmsca F S LMHom T Scalar T = Scalar S
19 17 18 sylan9req T LMod X L ran F X F S LMHom T Scalar U = Scalar S
20 lmghm F S LMHom T F S GrpHom T
21 2 lsssubg T LMod X L X SubGrp T
22 1 resghm2b X SubGrp T ran F X F S GrpHom T F S GrpHom U
23 21 22 stoic3 T LMod X L ran F X F S GrpHom T F S GrpHom U
24 23 biimpa T LMod X L ran F X F S GrpHom T F S GrpHom U
25 20 24 sylan2 T LMod X L ran F X F S LMHom T F S GrpHom U
26 eqid T = T
27 6 8 3 4 26 lmhmlin F S LMHom T x Base Scalar S y Base S F x S y = x T F y
28 27 3expb F S LMHom T x Base Scalar S y Base S F x S y = x T F y
29 28 adantll T LMod X L ran F X F S LMHom T x Base Scalar S y Base S F x S y = x T F y
30 simpll2 T LMod X L ran F X F S LMHom T x Base Scalar S y Base S X L
31 1 26 ressvsca X L T = U
32 31 oveqd X L x T F y = x U F y
33 30 32 syl T LMod X L ran F X F S LMHom T x Base Scalar S y Base S x T F y = x U F y
34 29 33 eqtrd T LMod X L ran F X F S LMHom T x Base Scalar S y Base S F x S y = x U F y
35 3 4 5 6 7 8 10 14 19 25 34 islmhmd T LMod X L ran F X F S LMHom T F S LMHom U
36 simpr T LMod X L ran F X F S LMHom U F S LMHom U
37 simpl1 T LMod X L ran F X F S LMHom U T LMod
38 simpl2 T LMod X L ran F X F S LMHom U X L
39 1 2 reslmhm2 F S LMHom U T LMod X L F S LMHom T
40 36 37 38 39 syl3anc T LMod X L ran F X F S LMHom U F S LMHom T
41 35 40 impbida T LMod X L ran F X F S LMHom T F S LMHom U