Step |
Hyp |
Ref |
Expression |
1 |
|
reslmhm2.u |
|
2 |
|
reslmhm2.l |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
lmhmlmod1 |
|
10 |
9
|
adantl |
|
11 |
|
simpl1 |
|
12 |
|
simpl2 |
|
13 |
1 2
|
lsslmod |
|
14 |
11 12 13
|
syl2anc |
|
15 |
|
eqid |
|
16 |
1 15
|
resssca |
|
17 |
16
|
3ad2ant2 |
|
18 |
6 15
|
lmhmsca |
|
19 |
17 18
|
sylan9req |
|
20 |
|
lmghm |
|
21 |
2
|
lsssubg |
|
22 |
1
|
resghm2b |
|
23 |
21 22
|
stoic3 |
|
24 |
23
|
biimpa |
|
25 |
20 24
|
sylan2 |
|
26 |
|
eqid |
|
27 |
6 8 3 4 26
|
lmhmlin |
|
28 |
27
|
3expb |
|
29 |
28
|
adantll |
|
30 |
|
simpll2 |
|
31 |
1 26
|
ressvsca |
|
32 |
31
|
oveqd |
|
33 |
30 32
|
syl |
|
34 |
29 33
|
eqtrd |
|
35 |
3 4 5 6 7 8 10 14 19 25 34
|
islmhmd |
|
36 |
|
simpr |
|
37 |
|
simpl1 |
|
38 |
|
simpl2 |
|
39 |
1 2
|
reslmhm2 |
|
40 |
36 37 38 39
|
syl3anc |
|
41 |
35 40
|
impbida |
|