Step |
Hyp |
Ref |
Expression |
1 |
|
resmhm.u |
|
2 |
|
mhmrcl2 |
|
3 |
1
|
submmnd |
|
4 |
2 3
|
anim12ci |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 6
|
mhmf |
|
8 |
5
|
submss |
|
9 |
|
fssres |
|
10 |
7 8 9
|
syl2an |
|
11 |
8
|
adantl |
|
12 |
1 5
|
ressbas2 |
|
13 |
11 12
|
syl |
|
14 |
13
|
feq2d |
|
15 |
10 14
|
mpbid |
|
16 |
|
simpll |
|
17 |
8
|
ad2antlr |
|
18 |
|
simprl |
|
19 |
17 18
|
sseldd |
|
20 |
|
simprr |
|
21 |
17 20
|
sseldd |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
5 22 23
|
mhmlin |
|
25 |
16 19 21 24
|
syl3anc |
|
26 |
22
|
submcl |
|
27 |
26
|
3expb |
|
28 |
27
|
adantll |
|
29 |
28
|
fvresd |
|
30 |
|
fvres |
|
31 |
|
fvres |
|
32 |
30 31
|
oveqan12d |
|
33 |
32
|
adantl |
|
34 |
25 29 33
|
3eqtr4d |
|
35 |
34
|
ralrimivva |
|
36 |
1 22
|
ressplusg |
|
37 |
36
|
adantl |
|
38 |
37
|
oveqd |
|
39 |
38
|
fveqeq2d |
|
40 |
13 39
|
raleqbidv |
|
41 |
13 40
|
raleqbidv |
|
42 |
35 41
|
mpbid |
|
43 |
|
eqid |
|
44 |
43
|
subm0cl |
|
45 |
44
|
adantl |
|
46 |
45
|
fvresd |
|
47 |
1 43
|
subm0 |
|
48 |
47
|
adantl |
|
49 |
48
|
fveq2d |
|
50 |
|
eqid |
|
51 |
43 50
|
mhm0 |
|
52 |
51
|
adantr |
|
53 |
46 49 52
|
3eqtr3d |
|
54 |
15 42 53
|
3jca |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
55 6 56 23 57 50
|
ismhm |
|
59 |
4 54 58
|
sylanbrc |
|