Metamath Proof Explorer


Theorem resmhm

Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Hypothesis resmhm.u U = S 𝑠 X
Assertion resmhm F S MndHom T X SubMnd S F X U MndHom T

Proof

Step Hyp Ref Expression
1 resmhm.u U = S 𝑠 X
2 mhmrcl2 F S MndHom T T Mnd
3 1 submmnd X SubMnd S U Mnd
4 2 3 anim12ci F S MndHom T X SubMnd S U Mnd T Mnd
5 eqid Base S = Base S
6 eqid Base T = Base T
7 5 6 mhmf F S MndHom T F : Base S Base T
8 5 submss X SubMnd S X Base S
9 fssres F : Base S Base T X Base S F X : X Base T
10 7 8 9 syl2an F S MndHom T X SubMnd S F X : X Base T
11 8 adantl F S MndHom T X SubMnd S X Base S
12 1 5 ressbas2 X Base S X = Base U
13 11 12 syl F S MndHom T X SubMnd S X = Base U
14 13 feq2d F S MndHom T X SubMnd S F X : X Base T F X : Base U Base T
15 10 14 mpbid F S MndHom T X SubMnd S F X : Base U Base T
16 simpll F S MndHom T X SubMnd S x X y X F S MndHom T
17 8 ad2antlr F S MndHom T X SubMnd S x X y X X Base S
18 simprl F S MndHom T X SubMnd S x X y X x X
19 17 18 sseldd F S MndHom T X SubMnd S x X y X x Base S
20 simprr F S MndHom T X SubMnd S x X y X y X
21 17 20 sseldd F S MndHom T X SubMnd S x X y X y Base S
22 eqid + S = + S
23 eqid + T = + T
24 5 22 23 mhmlin F S MndHom T x Base S y Base S F x + S y = F x + T F y
25 16 19 21 24 syl3anc F S MndHom T X SubMnd S x X y X F x + S y = F x + T F y
26 22 submcl X SubMnd S x X y X x + S y X
27 26 3expb X SubMnd S x X y X x + S y X
28 27 adantll F S MndHom T X SubMnd S x X y X x + S y X
29 28 fvresd F S MndHom T X SubMnd S x X y X F X x + S y = F x + S y
30 fvres x X F X x = F x
31 fvres y X F X y = F y
32 30 31 oveqan12d x X y X F X x + T F X y = F x + T F y
33 32 adantl F S MndHom T X SubMnd S x X y X F X x + T F X y = F x + T F y
34 25 29 33 3eqtr4d F S MndHom T X SubMnd S x X y X F X x + S y = F X x + T F X y
35 34 ralrimivva F S MndHom T X SubMnd S x X y X F X x + S y = F X x + T F X y
36 1 22 ressplusg X SubMnd S + S = + U
37 36 adantl F S MndHom T X SubMnd S + S = + U
38 37 oveqd F S MndHom T X SubMnd S x + S y = x + U y
39 38 fveqeq2d F S MndHom T X SubMnd S F X x + S y = F X x + T F X y F X x + U y = F X x + T F X y
40 13 39 raleqbidv F S MndHom T X SubMnd S y X F X x + S y = F X x + T F X y y Base U F X x + U y = F X x + T F X y
41 13 40 raleqbidv F S MndHom T X SubMnd S x X y X F X x + S y = F X x + T F X y x Base U y Base U F X x + U y = F X x + T F X y
42 35 41 mpbid F S MndHom T X SubMnd S x Base U y Base U F X x + U y = F X x + T F X y
43 eqid 0 S = 0 S
44 43 subm0cl X SubMnd S 0 S X
45 44 adantl F S MndHom T X SubMnd S 0 S X
46 45 fvresd F S MndHom T X SubMnd S F X 0 S = F 0 S
47 1 43 subm0 X SubMnd S 0 S = 0 U
48 47 adantl F S MndHom T X SubMnd S 0 S = 0 U
49 48 fveq2d F S MndHom T X SubMnd S F X 0 S = F X 0 U
50 eqid 0 T = 0 T
51 43 50 mhm0 F S MndHom T F 0 S = 0 T
52 51 adantr F S MndHom T X SubMnd S F 0 S = 0 T
53 46 49 52 3eqtr3d F S MndHom T X SubMnd S F X 0 U = 0 T
54 15 42 53 3jca F S MndHom T X SubMnd S F X : Base U Base T x Base U y Base U F X x + U y = F X x + T F X y F X 0 U = 0 T
55 eqid Base U = Base U
56 eqid + U = + U
57 eqid 0 U = 0 U
58 55 6 56 23 57 50 ismhm F X U MndHom T U Mnd T Mnd F X : Base U Base T x Base U y Base U F X x + U y = F X x + T F X y F X 0 U = 0 T
59 4 54 58 sylanbrc F S MndHom T X SubMnd S F X U MndHom T