Metamath Proof Explorer


Theorem resmhm2b

Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypothesis resmhm2.u U = T 𝑠 X
Assertion resmhm2b X SubMnd T ran F X F S MndHom T F S MndHom U

Proof

Step Hyp Ref Expression
1 resmhm2.u U = T 𝑠 X
2 mhmrcl1 F S MndHom T S Mnd
3 2 adantl X SubMnd T ran F X F S MndHom T S Mnd
4 1 submmnd X SubMnd T U Mnd
5 4 ad2antrr X SubMnd T ran F X F S MndHom T U Mnd
6 eqid Base S = Base S
7 eqid Base T = Base T
8 6 7 mhmf F S MndHom T F : Base S Base T
9 8 adantl X SubMnd T ran F X F S MndHom T F : Base S Base T
10 9 ffnd X SubMnd T ran F X F S MndHom T F Fn Base S
11 simplr X SubMnd T ran F X F S MndHom T ran F X
12 df-f F : Base S X F Fn Base S ran F X
13 10 11 12 sylanbrc X SubMnd T ran F X F S MndHom T F : Base S X
14 1 submbas X SubMnd T X = Base U
15 14 ad2antrr X SubMnd T ran F X F S MndHom T X = Base U
16 15 feq3d X SubMnd T ran F X F S MndHom T F : Base S X F : Base S Base U
17 13 16 mpbid X SubMnd T ran F X F S MndHom T F : Base S Base U
18 eqid + S = + S
19 eqid + T = + T
20 6 18 19 mhmlin F S MndHom T x Base S y Base S F x + S y = F x + T F y
21 20 3expb F S MndHom T x Base S y Base S F x + S y = F x + T F y
22 21 adantll X SubMnd T ran F X F S MndHom T x Base S y Base S F x + S y = F x + T F y
23 1 19 ressplusg X SubMnd T + T = + U
24 23 ad3antrrr X SubMnd T ran F X F S MndHom T x Base S y Base S + T = + U
25 24 oveqd X SubMnd T ran F X F S MndHom T x Base S y Base S F x + T F y = F x + U F y
26 22 25 eqtrd X SubMnd T ran F X F S MndHom T x Base S y Base S F x + S y = F x + U F y
27 26 ralrimivva X SubMnd T ran F X F S MndHom T x Base S y Base S F x + S y = F x + U F y
28 eqid 0 S = 0 S
29 eqid 0 T = 0 T
30 28 29 mhm0 F S MndHom T F 0 S = 0 T
31 30 adantl X SubMnd T ran F X F S MndHom T F 0 S = 0 T
32 1 29 subm0 X SubMnd T 0 T = 0 U
33 32 ad2antrr X SubMnd T ran F X F S MndHom T 0 T = 0 U
34 31 33 eqtrd X SubMnd T ran F X F S MndHom T F 0 S = 0 U
35 17 27 34 3jca X SubMnd T ran F X F S MndHom T F : Base S Base U x Base S y Base S F x + S y = F x + U F y F 0 S = 0 U
36 eqid Base U = Base U
37 eqid + U = + U
38 eqid 0 U = 0 U
39 6 36 18 37 28 38 ismhm F S MndHom U S Mnd U Mnd F : Base S Base U x Base S y Base S F x + S y = F x + U F y F 0 S = 0 U
40 3 5 35 39 syl21anbrc X SubMnd T ran F X F S MndHom T F S MndHom U
41 1 resmhm2 F S MndHom U X SubMnd T F S MndHom T
42 41 ancoms X SubMnd T F S MndHom U F S MndHom T
43 42 adantlr X SubMnd T ran F X F S MndHom U F S MndHom T
44 40 43 impbida X SubMnd T ran F X F S MndHom T F S MndHom U