Metamath Proof Explorer


Theorem resmpo

Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013)

Ref Expression
Assertion resmpo C A D B x A , y B E C × D = x C , y D E

Proof

Step Hyp Ref Expression
1 resoprab2 C A D B x y z | x A y B z = E C × D = x y z | x C y D z = E
2 df-mpo x A , y B E = x y z | x A y B z = E
3 2 reseq1i x A , y B E C × D = x y z | x A y B z = E C × D
4 df-mpo x C , y D E = x y z | x C y D z = E
5 1 3 4 3eqtr4g C A D B x A , y B E C × D = x C , y D E