Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resmpt
Next ⟩
resmpt3
Metamath Proof Explorer
Ascii
Unicode
Theorem
resmpt
Description:
Restriction of the mapping operation.
(Contributed by
Mario Carneiro
, 15-Jul-2013)
Ref
Expression
Assertion
resmpt
⊢
B
⊆
A
→
x
∈
A
⟼
C
↾
B
=
x
∈
B
⟼
C
Proof
Step
Hyp
Ref
Expression
1
resopab2
⊢
B
⊆
A
→
x
y
|
x
∈
A
∧
y
=
C
↾
B
=
x
y
|
x
∈
B
∧
y
=
C
2
df-mpt
⊢
x
∈
A
⟼
C
=
x
y
|
x
∈
A
∧
y
=
C
3
2
reseq1i
⊢
x
∈
A
⟼
C
↾
B
=
x
y
|
x
∈
A
∧
y
=
C
↾
B
4
df-mpt
⊢
x
∈
B
⟼
C
=
x
y
|
x
∈
B
∧
y
=
C
5
1
3
4
3eqtr4g
⊢
B
⊆
A
→
x
∈
A
⟼
C
↾
B
=
x
∈
B
⟼
C