Metamath Proof Explorer


Theorem resmptf

Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017)

Ref Expression
Hypotheses resmptf.a _ x A
resmptf.b _ x B
Assertion resmptf B A x A C B = x B C

Proof

Step Hyp Ref Expression
1 resmptf.a _ x A
2 resmptf.b _ x B
3 resmpt B A y A y / x C B = y B y / x C
4 nfcv _ y A
5 nfcv _ y C
6 nfcsb1v _ x y / x C
7 csbeq1a x = y C = y / x C
8 1 4 5 6 7 cbvmptf x A C = y A y / x C
9 8 reseq1i x A C B = y A y / x C B
10 nfcv _ y B
11 2 10 5 6 7 cbvmptf x B C = y B y / x C
12 3 9 11 3eqtr4g B A x A C B = x B C