Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resmptf
Next ⟩
resmptd
Metamath Proof Explorer
Ascii
Unicode
Theorem
resmptf
Description:
Restriction of the mapping operation.
(Contributed by
Thierry Arnoux
, 28-Mar-2017)
Ref
Expression
Hypotheses
resmptf.a
⊢
Ⅎ
_
x
A
resmptf.b
⊢
Ⅎ
_
x
B
Assertion
resmptf
⊢
B
⊆
A
→
x
∈
A
⟼
C
↾
B
=
x
∈
B
⟼
C
Proof
Step
Hyp
Ref
Expression
1
resmptf.a
⊢
Ⅎ
_
x
A
2
resmptf.b
⊢
Ⅎ
_
x
B
3
resmpt
⊢
B
⊆
A
→
y
∈
A
⟼
⦋
y
/
x
⦌
C
↾
B
=
y
∈
B
⟼
⦋
y
/
x
⦌
C
4
nfcv
⊢
Ⅎ
_
y
A
5
nfcv
⊢
Ⅎ
_
y
C
6
nfcsb1v
⊢
Ⅎ
_
x
⦋
y
/
x
⦌
C
7
csbeq1a
⊢
x
=
y
→
C
=
⦋
y
/
x
⦌
C
8
1
4
5
6
7
cbvmptf
⊢
x
∈
A
⟼
C
=
y
∈
A
⟼
⦋
y
/
x
⦌
C
9
8
reseq1i
⊢
x
∈
A
⟼
C
↾
B
=
y
∈
A
⟼
⦋
y
/
x
⦌
C
↾
B
10
nfcv
⊢
Ⅎ
_
y
B
11
2
10
5
6
7
cbvmptf
⊢
x
∈
B
⟼
C
=
y
∈
B
⟼
⦋
y
/
x
⦌
C
12
3
9
11
3eqtr4g
⊢
B
⊆
A
→
x
∈
A
⟼
C
↾
B
=
x
∈
B
⟼
C