Metamath Proof Explorer


Theorem resopab2

Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007)

Ref Expression
Assertion resopab2 A B x y | x B φ A = x y | x A φ

Proof

Step Hyp Ref Expression
1 resopab x y | x B φ A = x y | x A x B φ
2 ssel A B x A x B
3 2 pm4.71d A B x A x A x B
4 3 anbi1d A B x A φ x A x B φ
5 anass x A x B φ x A x B φ
6 4 5 bitr2di A B x A x B φ x A φ
7 6 opabbidv A B x y | x A x B φ = x y | x A φ
8 1 7 eqtrid A B x y | x B φ A = x y | x A φ