Metamath Proof Explorer


Theorem resqreu

Description: Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion resqreu A 0 A ∃! x x 2 = A 0 x i x +

Proof

Step Hyp Ref Expression
1 resqrex A 0 A x 0 x x 2 = A
2 recn x x
3 2 adantr x 0 x x 2 = A x
4 simprr x 0 x x 2 = A x 2 = A
5 rere x x = x
6 5 breq2d x 0 x 0 x
7 6 biimpar x 0 x 0 x
8 7 adantrr x 0 x x 2 = A 0 x
9 rennim x i x +
10 9 adantr x 0 x x 2 = A i x +
11 4 8 10 3jca x 0 x x 2 = A x 2 = A 0 x i x +
12 3 11 jca x 0 x x 2 = A x x 2 = A 0 x i x +
13 12 reximi2 x 0 x x 2 = A x x 2 = A 0 x i x +
14 1 13 syl A 0 A x x 2 = A 0 x i x +
15 recn A A
16 15 adantr A 0 A A
17 sqrmo A * x x 2 = A 0 x i x +
18 16 17 syl A 0 A * x x 2 = A 0 x i x +
19 reu5 ∃! x x 2 = A 0 x i x + x x 2 = A 0 x i x + * x x 2 = A 0 x i x +
20 14 18 19 sylanbrc A 0 A ∃! x x 2 = A 0 x i x +