Metamath Proof Explorer


Theorem resqrex

Description: Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion resqrex A 0 A x 0 x x 2 = A

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0 A 0 A 0 < A 0 = A
3 1 2 mpan A 0 A 0 < A 0 = A
4 elrp A + A 0 < A
5 01sqrex A + A 1 x + x 1 x 2 = A
6 rprege0 x + x 0 x
7 6 anim1i x + x 2 = A x 0 x x 2 = A
8 anass x 0 x x 2 = A x 0 x x 2 = A
9 7 8 sylib x + x 2 = A x 0 x x 2 = A
10 9 adantrl x + x 1 x 2 = A x 0 x x 2 = A
11 10 reximi2 x + x 1 x 2 = A x 0 x x 2 = A
12 5 11 syl A + A 1 x 0 x x 2 = A
13 4 12 sylanbr A 0 < A A 1 x 0 x x 2 = A
14 13 exp31 A 0 < A A 1 x 0 x x 2 = A
15 sq0 0 2 = 0
16 id 0 = A 0 = A
17 15 16 eqtrid 0 = A 0 2 = A
18 0le0 0 0
19 17 18 jctil 0 = A 0 0 0 2 = A
20 breq2 x = 0 0 x 0 0
21 oveq1 x = 0 x 2 = 0 2
22 21 eqeq1d x = 0 x 2 = A 0 2 = A
23 20 22 anbi12d x = 0 0 x x 2 = A 0 0 0 2 = A
24 23 rspcev 0 0 0 0 2 = A x 0 x x 2 = A
25 1 19 24 sylancr 0 = A x 0 x x 2 = A
26 25 a1i13 A 0 = A A 1 x 0 x x 2 = A
27 14 26 jaod A 0 < A 0 = A A 1 x 0 x x 2 = A
28 3 27 sylbid A 0 A A 1 x 0 x x 2 = A
29 28 imp A 0 A A 1 x 0 x x 2 = A
30 0lt1 0 < 1
31 1re 1
32 ltletr 0 1 A 0 < 1 1 A 0 < A
33 1 31 32 mp3an12 A 0 < 1 1 A 0 < A
34 30 33 mpani A 1 A 0 < A
35 34 imp A 1 A 0 < A
36 4 biimpri A 0 < A A +
37 35 36 syldan A 1 A A +
38 37 rpreccld A 1 A 1 A +
39 simpr A 1 A 1 A
40 lerec 1 0 < 1 A 0 < A 1 A 1 A 1 1
41 31 30 40 mpanl12 A 0 < A 1 A 1 A 1 1
42 35 41 syldan A 1 A 1 A 1 A 1 1
43 39 42 mpbid A 1 A 1 A 1 1
44 1div1e1 1 1 = 1
45 43 44 breqtrdi A 1 A 1 A 1
46 01sqrex 1 A + 1 A 1 y + y 1 y 2 = 1 A
47 38 45 46 syl2anc A 1 A y + y 1 y 2 = 1 A
48 rpre y + y
49 48 3ad2ant2 A 1 A y + y 1 y 2 = 1 A y
50 rpgt0 y + 0 < y
51 50 3ad2ant2 A 1 A y + y 1 y 2 = 1 A 0 < y
52 gt0ne0 y 0 < y y 0
53 rereccl y y 0 1 y
54 52 53 syldan y 0 < y 1 y
55 49 51 54 syl2anc A 1 A y + y 1 y 2 = 1 A 1 y
56 recgt0 y 0 < y 0 < 1 y
57 ltle 0 1 y 0 < 1 y 0 1 y
58 1 57 mpan 1 y 0 < 1 y 0 1 y
59 54 56 58 sylc y 0 < y 0 1 y
60 49 51 59 syl2anc A 1 A y + y 1 y 2 = 1 A 0 1 y
61 recn y y
62 61 adantr y 0 < y y
63 62 52 sqrecd y 0 < y 1 y 2 = 1 y 2
64 49 51 63 syl2anc A 1 A y + y 1 y 2 = 1 A 1 y 2 = 1 y 2
65 simp3r A 1 A y + y 1 y 2 = 1 A y 2 = 1 A
66 65 oveq2d A 1 A y + y 1 y 2 = 1 A 1 y 2 = 1 1 A
67 recn A A
68 gt0ne0 A 0 < A A 0
69 35 68 syldan A 1 A A 0
70 recrec A A 0 1 1 A = A
71 67 69 70 syl2an2r A 1 A 1 1 A = A
72 71 3ad2ant1 A 1 A y + y 1 y 2 = 1 A 1 1 A = A
73 64 66 72 3eqtrd A 1 A y + y 1 y 2 = 1 A 1 y 2 = A
74 breq2 x = 1 y 0 x 0 1 y
75 oveq1 x = 1 y x 2 = 1 y 2
76 75 eqeq1d x = 1 y x 2 = A 1 y 2 = A
77 74 76 anbi12d x = 1 y 0 x x 2 = A 0 1 y 1 y 2 = A
78 77 rspcev 1 y 0 1 y 1 y 2 = A x 0 x x 2 = A
79 55 60 73 78 syl12anc A 1 A y + y 1 y 2 = 1 A x 0 x x 2 = A
80 79 rexlimdv3a A 1 A y + y 1 y 2 = 1 A x 0 x x 2 = A
81 47 80 mpd A 1 A x 0 x x 2 = A
82 81 ex A 1 A x 0 x x 2 = A
83 82 adantr A 0 A 1 A x 0 x x 2 = A
84 simpl A 0 A A
85 letric A 1 A 1 1 A
86 84 31 85 sylancl A 0 A A 1 1 A
87 29 83 86 mpjaod A 0 A x 0 x x 2 = A