Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|
2 |
|
leloe |
|
3 |
1 2
|
mpan |
|
4 |
|
elrp |
|
5 |
|
01sqrex |
|
6 |
|
rprege0 |
|
7 |
6
|
anim1i |
|
8 |
|
anass |
|
9 |
7 8
|
sylib |
|
10 |
9
|
adantrl |
|
11 |
10
|
reximi2 |
|
12 |
5 11
|
syl |
|
13 |
4 12
|
sylanbr |
|
14 |
13
|
exp31 |
|
15 |
|
sq0 |
|
16 |
|
id |
|
17 |
15 16
|
eqtrid |
|
18 |
|
0le0 |
|
19 |
17 18
|
jctil |
|
20 |
|
breq2 |
|
21 |
|
oveq1 |
|
22 |
21
|
eqeq1d |
|
23 |
20 22
|
anbi12d |
|
24 |
23
|
rspcev |
|
25 |
1 19 24
|
sylancr |
|
26 |
25
|
a1i13 |
|
27 |
14 26
|
jaod |
|
28 |
3 27
|
sylbid |
|
29 |
28
|
imp |
|
30 |
|
0lt1 |
|
31 |
|
1re |
|
32 |
|
ltletr |
|
33 |
1 31 32
|
mp3an12 |
|
34 |
30 33
|
mpani |
|
35 |
34
|
imp |
|
36 |
4
|
biimpri |
|
37 |
35 36
|
syldan |
|
38 |
37
|
rpreccld |
|
39 |
|
simpr |
|
40 |
|
lerec |
|
41 |
31 30 40
|
mpanl12 |
|
42 |
35 41
|
syldan |
|
43 |
39 42
|
mpbid |
|
44 |
|
1div1e1 |
|
45 |
43 44
|
breqtrdi |
|
46 |
|
01sqrex |
|
47 |
38 45 46
|
syl2anc |
|
48 |
|
rpre |
|
49 |
48
|
3ad2ant2 |
|
50 |
|
rpgt0 |
|
51 |
50
|
3ad2ant2 |
|
52 |
|
gt0ne0 |
|
53 |
|
rereccl |
|
54 |
52 53
|
syldan |
|
55 |
49 51 54
|
syl2anc |
|
56 |
|
recgt0 |
|
57 |
|
ltle |
|
58 |
1 57
|
mpan |
|
59 |
54 56 58
|
sylc |
|
60 |
49 51 59
|
syl2anc |
|
61 |
|
recn |
|
62 |
61
|
adantr |
|
63 |
62 52
|
sqrecd |
|
64 |
49 51 63
|
syl2anc |
|
65 |
|
simp3r |
|
66 |
65
|
oveq2d |
|
67 |
|
recn |
|
68 |
|
gt0ne0 |
|
69 |
35 68
|
syldan |
|
70 |
|
recrec |
|
71 |
67 69 70
|
syl2an2r |
|
72 |
71
|
3ad2ant1 |
|
73 |
64 66 72
|
3eqtrd |
|
74 |
|
breq2 |
|
75 |
|
oveq1 |
|
76 |
75
|
eqeq1d |
|
77 |
74 76
|
anbi12d |
|
78 |
77
|
rspcev |
|
79 |
55 60 73 78
|
syl12anc |
|
80 |
79
|
rexlimdv3a |
|
81 |
47 80
|
mpd |
|
82 |
81
|
ex |
|
83 |
82
|
adantr |
|
84 |
|
simpl |
|
85 |
|
letric |
|
86 |
84 31 85
|
sylancl |
|
87 |
29 83 86
|
mpjaod |
|