Metamath Proof Explorer


Theorem resqrtcn

Description: Continuity of the real square root function. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion resqrtcn 0 +∞ : 0 +∞ cn

Proof

Step Hyp Ref Expression
1 sqrtf :
2 1 a1i :
3 2 feqmptd = x x
4 3 reseq1d 0 +∞ = x x 0 +∞
5 elrege0 x 0 +∞ x 0 x
6 5 simplbi x 0 +∞ x
7 6 recnd x 0 +∞ x
8 7 ssriv 0 +∞
9 resmpt 0 +∞ x x 0 +∞ = x 0 +∞ x
10 8 9 mp1i x x 0 +∞ = x 0 +∞ x
11 4 10 eqtrd 0 +∞ = x 0 +∞ x
12 11 mptru 0 +∞ = x 0 +∞ x
13 eqid x 0 +∞ x = x 0 +∞ x
14 resqrtcl x 0 x x
15 5 14 sylbi x 0 +∞ x
16 13 15 fmpti x 0 +∞ x : 0 +∞
17 ax-resscn
18 cxpsqrt x x 1 2 = x
19 7 18 syl x 0 +∞ x 1 2 = x
20 19 mpteq2ia x 0 +∞ x 1 2 = x 0 +∞ x
21 eqid TopOpen fld = TopOpen fld
22 21 cnfldtopon TopOpen fld TopOn
23 22 a1i TopOpen fld TopOn
24 resttopon TopOpen fld TopOn 0 +∞ TopOpen fld 𝑡 0 +∞ TopOn 0 +∞
25 23 8 24 sylancl TopOpen fld 𝑡 0 +∞ TopOn 0 +∞
26 25 cnmptid x 0 +∞ x TopOpen fld 𝑡 0 +∞ Cn TopOpen fld 𝑡 0 +∞
27 cnvimass -1 + dom
28 ref :
29 28 fdmi dom =
30 27 29 sseqtri -1 +
31 resttopon TopOpen fld TopOn -1 + TopOpen fld 𝑡 -1 + TopOn -1 +
32 23 30 31 sylancl TopOpen fld 𝑡 -1 + TopOn -1 +
33 halfcn 1 2
34 1rp 1 +
35 rphalfcl 1 + 1 2 +
36 34 35 ax-mp 1 2 +
37 rpre 1 2 + 1 2
38 rere 1 2 1 2 = 1 2
39 36 37 38 mp2b 1 2 = 1 2
40 39 36 eqeltri 1 2 +
41 ffn : Fn
42 elpreima Fn 1 2 -1 + 1 2 1 2 +
43 28 41 42 mp2b 1 2 -1 + 1 2 1 2 +
44 33 40 43 mpbir2an 1 2 -1 +
45 44 a1i 1 2 -1 +
46 25 32 45 cnmptc x 0 +∞ 1 2 TopOpen fld 𝑡 0 +∞ Cn TopOpen fld 𝑡 -1 +
47 eqid -1 + = -1 +
48 eqid TopOpen fld 𝑡 0 +∞ = TopOpen fld 𝑡 0 +∞
49 eqid TopOpen fld 𝑡 -1 + = TopOpen fld 𝑡 -1 +
50 47 21 48 49 cxpcn3 y 0 +∞ , z -1 + y z TopOpen fld 𝑡 0 +∞ × t TopOpen fld 𝑡 -1 + Cn TopOpen fld
51 50 a1i y 0 +∞ , z -1 + y z TopOpen fld 𝑡 0 +∞ × t TopOpen fld 𝑡 -1 + Cn TopOpen fld
52 oveq12 y = x z = 1 2 y z = x 1 2
53 25 26 46 25 32 51 52 cnmpt12 x 0 +∞ x 1 2 TopOpen fld 𝑡 0 +∞ Cn TopOpen fld
54 ssid
55 22 toponrestid TopOpen fld = TopOpen fld 𝑡
56 21 48 55 cncfcn 0 +∞ 0 +∞ cn = TopOpen fld 𝑡 0 +∞ Cn TopOpen fld
57 8 54 56 mp2an 0 +∞ cn = TopOpen fld 𝑡 0 +∞ Cn TopOpen fld
58 53 57 eleqtrrdi x 0 +∞ x 1 2 : 0 +∞ cn
59 20 58 eqeltrrid x 0 +∞ x : 0 +∞ cn
60 59 mptru x 0 +∞ x : 0 +∞ cn
61 cncffvrn x 0 +∞ x : 0 +∞ cn x 0 +∞ x : 0 +∞ cn x 0 +∞ x : 0 +∞
62 17 60 61 mp2an x 0 +∞ x : 0 +∞ cn x 0 +∞ x : 0 +∞
63 16 62 mpbir x 0 +∞ x : 0 +∞ cn
64 12 63 eqeltri 0 +∞ : 0 +∞ cn