Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
resqrtthlem
Next ⟩
resqrtth
Metamath Proof Explorer
Ascii
Unicode
Theorem
resqrtthlem
Description:
Lemma for
resqrtth
.
(Contributed by
Mario Carneiro
, 9-Jul-2013)
Ref
Expression
Assertion
resqrtthlem
⊢
A
∈
ℝ
∧
0
≤
A
→
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
Proof
Step
Hyp
Ref
Expression
1
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
2
sqrtval
⊢
A
∈
ℂ
→
A
=
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
3
2
eqcomd
⊢
A
∈
ℂ
→
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
A
4
1
3
syl
⊢
A
∈
ℝ
→
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
A
5
4
adantr
⊢
A
∈
ℝ
∧
0
≤
A
→
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
A
6
resqrtcl
⊢
A
∈
ℝ
∧
0
≤
A
→
A
∈
ℝ
7
6
recnd
⊢
A
∈
ℝ
∧
0
≤
A
→
A
∈
ℂ
8
resqreu
⊢
A
∈
ℝ
∧
0
≤
A
→
∃!
x
∈
ℂ
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
9
oveq1
⊢
x
=
A
→
x
2
=
A
2
10
9
eqeq1d
⊢
x
=
A
→
x
2
=
A
↔
A
2
=
A
11
fveq2
⊢
x
=
A
→
ℜ
⁡
x
=
ℜ
⁡
A
12
11
breq2d
⊢
x
=
A
→
0
≤
ℜ
⁡
x
↔
0
≤
ℜ
⁡
A
13
oveq2
⊢
x
=
A
→
i
⁢
x
=
i
⁢
A
14
neleq1
⊢
i
⁢
x
=
i
⁢
A
→
i
⁢
x
∉
ℝ
+
↔
i
⁢
A
∉
ℝ
+
15
13
14
syl
⊢
x
=
A
→
i
⁢
x
∉
ℝ
+
↔
i
⁢
A
∉
ℝ
+
16
10
12
15
3anbi123d
⊢
x
=
A
→
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
↔
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
17
16
riota2
⊢
A
∈
ℂ
∧
∃!
x
∈
ℂ
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
→
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
↔
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
A
18
7
8
17
syl2anc
⊢
A
∈
ℝ
∧
0
≤
A
→
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
↔
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
A
19
5
18
mpbird
⊢
A
∈
ℝ
∧
0
≤
A
→
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+