Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
resres
Next ⟩
resundi
Metamath Proof Explorer
Ascii
Unicode
Theorem
resres
Description:
The restriction of a restriction.
(Contributed by
NM
, 27-Mar-2008)
Ref
Expression
Assertion
resres
⊢
A
↾
B
↾
C
=
A
↾
B
∩
C
Proof
Step
Hyp
Ref
Expression
1
df-res
⊢
A
↾
B
↾
C
=
A
↾
B
∩
C
×
V
2
df-res
⊢
A
↾
B
=
A
∩
B
×
V
3
2
ineq1i
⊢
A
↾
B
∩
C
×
V
=
A
∩
B
×
V
∩
C
×
V
4
xpindir
⊢
B
∩
C
×
V
=
B
×
V
∩
C
×
V
5
4
ineq2i
⊢
A
∩
B
∩
C
×
V
=
A
∩
B
×
V
∩
C
×
V
6
df-res
⊢
A
↾
B
∩
C
=
A
∩
B
∩
C
×
V
7
inass
⊢
A
∩
B
×
V
∩
C
×
V
=
A
∩
B
×
V
∩
C
×
V
8
5
6
7
3eqtr4ri
⊢
A
∩
B
×
V
∩
C
×
V
=
A
↾
B
∩
C
9
1
3
8
3eqtri
⊢
A
↾
B
↾
C
=
A
↾
B
∩
C